Form Factor Measurements at BESIII for an Improved Standard Model Prediction of the muon g-2

Marco Destefanis

Università degli Studi di Torino e INFN

on behalf of the BESIII Collaboration

PANIC 2017

21st Particles & Nuclei International Conference

Beijing, China

September 1-5, 2017

Overview

> Introduction

Muon magnetic moment BEPCII and the BESIII experiment BESIII dataset

> Physics results

> Summary

Lepton magnetic moment: $\bar{\mu} = g \frac{Qe}{2m} \bar{s}$

Dirac theory pediction: g = 2(1 + a)

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

Muon anomaly arises from quantum fluctuations

QED contribution (largest):

Hadronic contribution:

$$a_{\mu} = \frac{g_{\mu} - 2}{2} = \frac{\alpha}{2\pi} + \dots = 0.001161$$

 $a_{\mu}^{theo} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$

Contribution	Results in 10	D ⁻¹⁰ units	
QED (leptons)	11658471.885	± 0.004	Kinoshita et al. (2012)
Weak	15.4	± 0.2	Czamecki et al. (2003)
HVP (LO)	692.3	± 4.2	Davier et al. (2001)
HVP (HO)	-9.84	± 0.07	Hagiwara et al. (2009)
HLBL	11.6	± 4.0	Jegerlehner, Nyffler (2009)
Total	11659181.3	± 5.8	
Experiment	11659208.9	± 6.3	Discrepancy: 27.6

Prediction limited by hadronic contributions

Perturbative method cannot be applied in the relevant energy regime

Hadronic Contributions

Hadronic Vacuum Polarization

Hadronic Light-by-Light

 γ π^{0}, η, η' $\gamma^{*}, \gamma^{*}, \gamma^$

Two-photons collisions

Dispersion integral: $a_{\mu,LO}^{HVP} = \frac{1}{4\pi^3} \int_{m_{\pi^0}}^{\infty} ds K(s) \sigma_{had}(s)$

KLOE^[1] and BABAR^[2] measurement discrepancy 3-5% Another high precision measurement needed -> BESIII

Wider mass range than KLOE

Closer to $\sqrt{s} \leq 2$ GeV than BABAR -> lower suppression of ISR events

Untagged ISR mode can be used above $\sqrt{s} \gtrsim 1 \text{ GeV}$

-> no problem for $\geq 4\pi$

ISR measurement of baryon Form Factors: see presentation of <mark>Zhaoxia Meng</mark>

^[1] B. Aubert et al., Phys. Rev. Lett. 103, 231801 (2009). J.P. Lees et al., Phys. Rev. D86, 032013 (2012)

[²] F. Ambrosino et al. Phys. Lett. B 670, 285 (2009). F. Ambrosino et al. Phys. Lett. B 700, 102-110 (2011).
 D. Babusci et al. Phys. Lett. B 720, 336-343 (2013).

BEPCII Storage Rings

Beam energy: 1.0-2.3 GeV Design Luminosity: $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ > Achieved Luminosity: $\sim 1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ > Optimum energy: 1.89 GeV > Energy spread: 5.16 ×10⁻⁴ > No. of bunches: 93 > Bunch length: 1.5 cm > Total current: 0.91 A > Circumference: 237m

Beijing Electron-Positron Collider II

The BESIII Spectrometer @ IHEP

BEijing Spectrometer III

e⁺e⁻ collisions

D.M. Asner et al, Physics at BES-III, arXiv:0809.1869v1 [hep-ex] (2008)

BESIII Dataset

- World largest data sample on J/ψ, ψ(25), ψ(3770), V(4260)...
 in e⁺e⁻ collisions
- From light meson spectroscopy to $\Lambda_c \Lambda_c$
- Fine and coarse scan of the accessible energy region

e⁺e⁻ -> γπ⁺π⁻

Particle Identification

- Kinematic fit for $\pi^+\pi^-\gamma_{ISR}$ final state
- Standard BESIII PID system for electron rejection
- Muon-pion separation needed

$e^+e^- \rightarrow \gamma \pi^+ \pi^-$ Selection

PLB 753, 629 (2016)

- Muons and pions have different shower shape in EMC
- Artificial Neural Network (ANN) for μ - π separation
- Very clean sample after ANN
- p-w interference clearly visible

$\pi^{+}\pi^{-}$ Cross Section

p-w interference clearly visible

Comparison of $\pi^{+}\pi^{-}$ Form Factor

- New BESIII measurement agrees with KLOE^[1] and BABAR^[2]
- Small shift wrt BABAR above ρ-ω interference
 - ^[1] B. Aubert et al., Phys. Rev. Lett. 103, 231801 (2009).
 J.P. Lees et al., Phys. Rev. D86, 032013 (2012)
 - [²] F. Ambrosino et al. Phys. Lett. B 670, 285 (2009).
 F. Ambrosino et al. Phys. Lett. B 700, 102-110 (2011).
 D. Babusci et al. Phys. Lett. B 720, 336-343 (2013).

- Precision compatible with previous measurements
- $a_{\mu}^{\pi\pi,LO}$ (600 900 MeV) = (368.2 ± 2.5_{stat} ± 3.3_{syst}) · 10⁻¹⁰
- Confirmation of deviation of > 3σ between experiment and theory

^[1] B. Aubert et al., Phys. Rev. Lett. 103, 231801 (2009). J.P. Lees et al., Phys. Rev. D86, 032013 (2012)

^[2] F. Ambrosino et al. Phys. Lett. B 670, 285 (2009). F. Ambrosino et al. Phys. Lett. B 700, 102-110 (2011).

D. Babusci et al. Phys. Lett. B 720, 336-343 (2013).

e⁺e⁻ -> γπ⁺π⁻π⁰

PRELIMINARY

Fit to $\pi^+\pi^-\pi^0$ Mass Spectrum

Fit Results of $\gamma \pi^{+} \pi^{-} \pi^{0}$

PRELIMINARY

BESIII Preliminary							
Parameters	PDG	This result					
χ^2/NDF	-	443/390					
$m_{\omega} (MeV/c^2)$	782.65 ± 0.12	$783.20 \pm 0.07 \pm 0.23$					
$m_{\phi}~(~{ m MeV}/c^2)$	1019.46 ± 0.02	$1020.00 \pm 0.06 \pm 0.30$					
$m_{\omega'}~(~{ m MeV}/c^2)$	$1400 \sim 1450$	$1388\pm39\pm52$					
$m_{\omega^{\prime\prime}}~(~{ m MeV}/c^2)$	1670 ± 30	$1699 \pm 9 \pm 6$					
$\Gamma_{\omega} (MeV/c^2)$	8.49 ± 0.08	PDG					
Γ_{ϕ} (MeV)	4.26 ± 0.04	PDG					
$\Gamma_{\omega'}$ (MeV)	$180\sim250$	$629\pm155\pm212$					
$\Gamma_{\omega^{\prime\prime}}$ (MeV)	315 ± 35	$331\pm40\pm28$					
$(\mathcal{B}_{\omega ightarrow e^+e^-} imes \mathcal{B}_{\omega ightarrow 3\pi}) \ (10^{-5})$	$\textbf{6.49} \pm \textbf{0.11}$	$6.94 \pm 0.08 \pm 0.17$					
$(\mathcal{B}_{\phi ightarrow e^+e^-} imes\mathcal{B}_{\phi ightarrow 3\pi})~(10^{-5})$	4.53 ± 0.10	$4.20 \pm 0.08 \pm 0.17$					
$(\mathcal{B}_{\omega' ightarrow e^+e^-} imes \mathcal{B}_{\omega' ightarrow 3\pi})~(10^{-6})$	0.82 ± 0.08	$0.84 \pm 0.09 \pm 0.09$					
$(\mathcal{B}_{\omega^{\prime\prime} ightarrow e^+e^-} imes \mathcal{B}_{\omega^{\prime\prime} ightarrow 3\pi})~(10^{-6})$	1.30 ± 0.20	$1.14 \pm 0.15 \pm 0.15$					
$\mathcal{B}_{J/\psi ightarrow 3\pi} (\%)$	2.11 ± 0.07	$2.18 \pm 0.03 \pm 0.06$					

$\pi^+\pi^-\pi^0$ Cross Section

×10⁻

1.4

1.2

0.8

0.6

0.4

0.2

Cross section (nb)

1.6 BESIII Preliminar

- BESIII results clearly support BABAR measurement
- Improved precision
- Can be used as input for $a_{\mu}^{3\pi,LO}$

[1] R. R. Akhmetshin et al., Phys. Lett. B 476, 33 (2000). R. R. Akhmetshin et al., Phys. Lett. B 642, 203 (2006).
[2] M. N. Achasov et al., Phys. Rev. D 68, 052006 (2003). M. N. Achasov et al., Phys. Rev. D 66, 032001 (2002).
[3] B. Aubert et al., Phys. Rev. D 70, 072004 (2004).

PRELIMINARY

BESIII

CMD2

[1]

e⁺e⁻ -> γπ⁺π⁻2π⁰

Event Selection

- Tagged and untagged analysis performed separately
- Tagged: kinematic fit, π^0 veto for ISR photon
- Untagged: |cosθ_{ISR}| > 0.995
- Main background from $\pi^+\pi^-3\pi^0(\gamma_{ISR})$
- Partial wave analysis with HelPWA for $\pi^{+}\pi^{-}3\pi^{0}$
- Correct MC background according to data

$\pi^{+}\pi^{-}2\pi^{0}$ Combined Cross Section

BESIII (preliminary) $18.63 \pm 0.27 \pm 0.57$ BABAR (preliminary) $17.9 \pm 0.1 \pm 0.6$ [1] R. R. Akhmetshin et al., Phys. Lett. B 466, 392 (1999). [5] M. N. Achasov et al., Preprint BUDKER-INP-2001-34 (Novosibirsk, 2001). [2] S. I. Dolinsky et al., Phys. Rept. 202, 99 (1991). [6] G. Cosme et al., Phys. Lett. B 63, 349 (1976). [3] C. Bacci et al., Nucl. Phys. B 184, 31 (1981). [7] G. Cosme et al., Nucl. Phys. B 152 215 (1979). [4] L. M. Kurdadze et al., J. Exp. Theor. Phys. Lett. 43 643 (1986). [8] B. Esposito et al., Lett. Nuovo Cim. 31, 445 (1981).

20

$w\pi^0$ Cross Section

Fit of $M(3\pi)$ distibution with double Gaussian for w plus third order polynomial for non-w in each $M(\pi^*\pi 2\pi^0)$ bin

[1] R. R. Akhmetshin et al., Phys. Lett. B 466, 392 (1999).

[2] S. I. Dolinsky et al., Phys. Rept. 202, 99 (1991).
[3] C. Bacci et al., Nucl. Phys. B 184, 31 (1981).

[4] D. Bisello et al., Preprint LAL-90-35 (Orsay, 1990).

[5] M. N. Achasov et al., Phys. Lett. B 486, 29 (2000).
[6] M. N. Achasov et al., arXiv:1610.00235 [hep-ex].
[7] F. Ambrosino et al., Phys. Lett. B 669, 223 (2008).

PRELIMINARY

$\pi^+\pi^-3\pi^0$ Cross Section

Systematic uncertainty: 13.8%

PRELIMINARY

Hadronic Light-by-Light Contribution

Interaction of virtual mesons with real/virtual photons

 a_{μ}^{hLBL} not directly related to measurable quantities

- π^{0}, η, η' χ^{*} χ^{*}
- Hadronic models
 - ChPT at lowest energies
 - pQCD at high energies
 - Intermediate region?

Data driven approaches

- Based on dispersion relations
- Reduce model dependency
- Reliable error estimates
- Transition FF as experimental input

Glasgow Consensus, arXiv:0901.0306 Jegerlehner/Nyffeler, Phys. Rept. 477,1

> Colangelo, Hoferichter et al. (Bern) Vanderhaeghen, Pauk et al. (Mainz)

Two-Photon Collisions

- Exchange of 2 photons in e^+e^- collisions
- Pseudoscalar, axial, and tensor states accessible
- $M_x \leftrightarrow \sqrt{s}$
- $\sigma \propto \alpha^2 \ln^2 E$
- $\sigma \propto F^2(Q_1^2,Q_2^2)$, with $Q_1^2 = -q_i^2$
- Forward peaked kinematic
 - Experimentally challenging
 - Special tagging detectors

Contributions to a_{μ}

- Current accuracy of a_{μ} : ~ 6.3 \cdot 10⁻¹⁰
- Contribution of π^{0} : ~ 7 \cdot 10⁻¹⁰

Knecht, Nyffeler Phys. Rev. D65, 073034 (2002)

- Expected accuracy of new experiments at FNAL and J-PARC: ~ 1.6 \cdot 10 $^{-10}$
- Contribution of n and n' relevant!

 $\eta \sim 1.5 \cdot 10^{-10}$ $\eta' \sim 1.5 \cdot 10^{-10}$

Knecht, Nyffeler Phys. Rev. D65, 073034 (2002)

Two-photons physics program exstabilished at BESIII Untagged, single-tagged, and double-tagged measurements are ongoing

Summary

- High precision measurements of $\pi^{+}\pi^{-}$, $\pi^{+}\pi^{-}\pi^{0}$, $\pi^{+}\pi^{-}2\pi^{0}$ cross sections Results compatible with previous experiments Improved BR measurements Further measurements will reduce the a_{μ}^{VP} uncertainty
- Near future
 - Two-photon physics program
 - Include all BESIII data sets
 - Investigate more final states $(2\pi^+2\pi^-, \text{ etc...})$
- Stay tuned for new results!!

Backup Slides

$\pi^{\scriptscriptstyle \intercal}\pi^{\scriptscriptstyle \intercal}$ Systematic Uncertainties

Source	Uncertainty (%)
Photon efficiency correction	0.2
Pion tracking efficiency correction	0.3
Pion ANN efficiency correction	0.2
Pion e-PID efficiency correction	0.2
ANN	negl.
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
Vacuum polarisation correction δ_{vac}	0.2
Radiator function	0.5
Luminosity ${\cal L}$	0.5
Sum	0.9

$\pi^{*}\pi^{-}\pi^{0}$ Systematic Uncertainties

Data samples	Da	ta I	Data II			
Source	Tagged	Untagged	Tagged	Untagged		
Tracking	0.4-1.0	0.4-0.9	0.4-0.7	0.4-0.7		
Photon reconstruction	0.9	0.6	0.9	0.6		
E/P	0.7-0.9	0.4	0.4	0.4		
π^{0} side band	0.6-0.9	0.4	0.4	0.4		
Kinematic fit (χ^2 cut)	1.0-1.4	0.4	0.6	0.4		
Veto π^0 for $\gamma_{\rm ISR}$	0.6	-	0.5-1.0	-		
$\cos \theta_{\gamma_{\rm ISP}}^{2C}$	-	1.5	-	1.5		
Vertex	-	0.2	-	0.2		
BG subtraction	0.0-19	0-12	0.04-26	0-6.1		
Vacuum polarization	0.02-0.23	0.02-0.07	0.02-0.23	0.02-0.07		
Unfolding	0.91-1.7	1.3	0.61-0.93	0.77		
Radiative function	0.5	0.5	0.5	0.5		
Luminosity	1.1	1.1	1.1	1.1		
Total	> 2.4	> 2.6 > 2.0		> 2.4		
in unit [%]						

BESIII Preliminary

• Systematic error < 2% in the resonance regions

$\pi^+\pi^-2\pi^0$ Systematic Uncertainties

• Background uncertainties are mass dependent

Region	Mass range [GeV]
R1	$0.5 < M(4\pi) < 1.5$
R2	$1.5 < M(4\pi) < 2.0$
R3	$2.0 < M(4\pi) < 3.0$
R4	$3.0 < M(4\pi) < 3.8$

Source	Tagged [%]			Untagged [%]				
	R1	R2	R3	R4	R1	R2	R3	R4
Luminosity	0.50			0.50				
Tracking		0.60			0.60			
VP correction		().05		0.05			
FSR correction	0.20			0.20				
Radiator Function	0.50			0.50				
ISR Photon Eff.	0.30			-				
π^0 Eff.	2.57			2.52				
Signal Eff.	0.58			0.61				
Kin. fit	0.42			0.45				
Event selection	0.60 1.46		0.64					
Bgr. Subrt. 5π	0.01	0.13	2.47	3.23	0.00	0.01	0.08	0.15
Bgr. Subrt. $5\pi\gamma_{ISR}$	0.48	0.47	7.77	10.27	0.59	0.25	0.65	0.71
Bgr. Subrt. <i>qā</i>	0.50	0.98	12.68	21.05	0.58	0.22	0.82	0.76
Bgr. Subrt. other	0.05	0.14	2.31	5.34	0.01	0.02	0.30	0.32
ω fits (only for $\omega \pi^0$)	2.26				2.	26		
$\pi^+\pi^-2\pi^0$ Total	2.97	3.09	15.58	24.45	2.95	2.85	3.04	3.04
$\omega\pi^0$ Total	3.80	4.84	7.71	3.73	3.91	3.70	4.48	3.68

30

BESIII Detector

BESIII Production of Charmonium(like) states

• 3850 ÷ 4590 MeV: 0.5 fb⁻¹ fine scan

BESIII: Baryon Production

