



# Charmonium decays at BESIII

Jielei Zhang(<u>zhangjielei@ihep.ac.cn</u>) (On behalf of BESIII Collaboration) Xinyang Normal University September 3<sup>rd</sup>, 2017

## BESIII@BEPCII



Double ring e<sup>+</sup>e<sup>-</sup> collider:

NG NORMAL UNIT



• Beam energy: 1.0 – 2.3 GeV Achievesign luminosity: 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup> Energy spread: 5.16×10<sup>-4</sup>

- Number of bunches: 93
- Total current: 0.91 A
- Bunch length: 1.5 cm

Multi-purpose detector:



Multilayer Drift Chamber

 $\sigma(p)/p < 0.5$  % for 1 GeV tracks,  $\sigma(dE/dx)/dE/dx < 6\%$ ,  $\sigma(xy) = 130 \ \mu m$ 

- Time of Flight σ(t) ~ 90 ps
- EMCalorimeter σ(E)/E < 2.5 %, σ(x)</li>
   < 6mm for 1 GeV e<sup>-</sup>
- **Muon Counter** σ(xy) < 2 cm 2

## **BESIII** data samples

He s







- > Branching fraction measurements of  $\psi(3686) \rightarrow \gamma \chi_{cJ}$
- ➤ Measurement of higher-order multipole amplitudes in  $\psi(3686) \rightarrow \gamma \chi_{c1,2}$  with  $\chi_{c1,2} \rightarrow \gamma J/\psi$  and search for the transition  $\eta_c(2S) \rightarrow \gamma J/\psi$
- ▶ Observation of  $\psi(3686) \rightarrow e^+e^-\chi_{cJ}$  and  $\chi_{cJ} \rightarrow e^+e^-J/\psi$
- > Study of  $J/\psi$  and  $\psi(3686)$  decay to  $\Lambda\overline{\Lambda}$  and  $\Sigma^0\overline{\Sigma}^0$  final states
- ≻ Study of  $J/\psi$  and  $\psi(3686) \rightarrow \Sigma(1385)^0 \overline{\Sigma}(1385)^0$  and  $\Xi^0 \overline{\Xi}^0$
- ➢ Observation of  $h_c$  radiative decay  $h_c \rightarrow \gamma \eta'$  and evidence for  $h_c \rightarrow \gamma \eta$
- ➤ Improved measurements of branching fractions for  $η_c → φφ$  and ωφ

## Branching fraction measurements of $\psi(3686) \rightarrow \gamma \chi_{cI}$

- Understand the inner structure of hadrons
- $\succ$  Help untangle the mysterious XYZ states

More precise measurement



$$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ}) = \frac{N_{\psi(3686) \to \gamma \chi_{cJ}}}{\epsilon_{\psi(3686) \to \gamma \chi_{cJ}} \times N_{\psi(3686)}}$$
$$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ}) \times \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)$$
$$= \frac{N_{\chi_{cJ} \to \gamma J/\psi}}{\epsilon_{\chi_{cJ} \to \gamma J/\psi} \times N_{\psi(3686)}},$$
$$\mathcal{B}(\chi_{cJ} \to \gamma J/\psi)$$
$$= \frac{\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ}) \times \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)}{\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ})}$$
$$= \frac{\epsilon_{\psi(3686) \to \gamma \chi_{cJ}} \times N_{\chi_{cJ} \to \gamma J/\psi}}{\epsilon_{\chi_{cJ} \to \gamma J/\psi} \times N_{\psi(3686) \to \gamma \chi_{cJ}}}.$$

$$(\psi(3686) \to \gamma \chi_{cJ}) = \frac{N_{\psi(3686) \to \gamma \chi_{cJ}}}{\epsilon_{\psi(3686) \to \gamma \chi_{cJ}} \times N_{\psi(3686)}}$$

$$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ}) \times \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)$$
$$= \frac{N_{\chi_{cJ} \to \gamma J/\psi}}{\epsilon_{\chi_{cJ} \to \gamma J/\psi} \times N_{\psi(3686)}},$$

## Branching fraction measurements of $\psi(3686) \rightarrow \gamma \chi_{cJ}$ Branching fraction results

| Branching Fraction                                                                                                                                                | This analysis (%)                                                                                                  | Other (%)                                                                                                                               | PDG [7] (%)<br>Average                                                   | PDG [7] (%)<br>Fit                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $ \frac{\mathcal{B}(\psi(3686) \to \gamma \chi_{c0})}{\mathcal{B}(\psi(3686) \to \gamma \chi_{c1})} \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) $             | $\begin{array}{c} 9.389 \pm 0.014 \pm 0.332 \\ 9.905 \pm 0.011 \pm 0.353 \\ 9.621 \pm 0.013 \pm 0.272 \end{array}$ | $\begin{array}{c} 9.22 \pm 0.11 \pm 0.46 \ [9] \\ 9.07 \pm 0.11 \pm 0.54 \ [9] \\ 9.33 \pm 0.14 \pm 0.61 \ [9] \end{array}$             | $\begin{array}{c} 9.2 \pm 0.4 \\ 8.9 \pm 0.5 \\ 8.8 \pm 0.5 \end{array}$ | $\begin{array}{c} 9.99 \pm 0.27 \\ 9.55 \pm 0.31 \\ 9.11 \pm 0.31 \end{array}$ |
| $\mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) \times \mathcal{B}(\chi_{c0} \to \gamma J/\psi)$                                                                    | $0.024 \pm 0.015 \pm 0.205$                                                                                        | $\begin{array}{c} 0.125 \pm 0.007 \pm 0.013 \ [31] \\ 0.151 \pm 0.003 \pm 0.010 \ [15] \\ 0.158 \pm 0.003 \pm 0.006 \ [16] \end{array}$ | $0.131\pm0.035$                                                          | $0.127\pm0.006$                                                                |
| $\mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \times \mathcal{B}(\chi_{c1} \to \gamma J/\psi)$                                                                    | $3.442 \pm 0.010 \pm 0.132$                                                                                        | $3.56 \pm 0.03 \pm 0.12$ [31]<br>$3.377 \pm 0.009 \pm 0.183$ [15]<br>$3.518 \pm 0.01 \pm 0.120$ [16]                                    | $2.93\pm0.15$                                                            | $3.24\pm0.07$                                                                  |
| $\mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) \times \mathcal{B}(\chi_{c2} \to \gamma J/\psi)$                                                                    | $1.793 \pm 0.008 \pm 0.163$                                                                                        | $\begin{array}{c} 1.95 \pm 0.02 \pm 0.07 \ [31] \\ 1.874 \pm 0.007 \pm 0.102 \ [15] \\ 1.996 \pm 0.008 \pm 0.070 \ [16] \end{array}$    | $1.52\pm0.15$                                                            | $1.75\pm0.04$                                                                  |
| $ \begin{array}{l} \mathcal{B}(\chi_{c0} \to \gamma J/\psi) \\ \mathcal{B}(\chi_{c1} \to \gamma J/\psi) \\ \mathcal{B}(\chi_{c2} \to \gamma J/\psi) \end{array} $ | $\begin{array}{c} 0.25 \pm 0.16 \pm 2.15 \\ 34.75 \pm 0.11 \pm 1.70 \\ 18.64 \pm 0.08 \pm 1.69 \end{array}$        | $2 \pm 0.2 \pm 0.2$ [32]<br>37.9 $\pm 0.8 \pm 2.1$ [32]<br>19.9 $\pm 0.5 \pm 1.2$ [32]                                                  |                                                                          | $\begin{array}{c} 1.27 \pm 0.06 \\ 33.9 \pm 1.2 \\ 19.2 \pm 0.7 \end{array}$   |

#### PRD 96, 032001 (2017)

$$\begin{aligned} \mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) / \mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \\ &= 0.948 \pm 0.002 \pm 0.044 \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) / \mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) \\ &= 0.976 \pm 0.002 \pm 0.040 \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) / \mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \\ &= 0.971 \pm 0.002 \pm 0.040 \end{aligned}$$

#### Theoretical prediction and experimental measurement

| $\Gamma_{E1}$ (keV) |                                                        |                      |                               |                               | $\Gamma_{\rm EM}~({\rm keV})$ |                   |                   |                   |                                                                             |
|---------------------|--------------------------------------------------------|----------------------|-------------------------------|-------------------------------|-------------------------------|-------------------|-------------------|-------------------|-----------------------------------------------------------------------------|
| Initial State       | Final State                                            | RQM [33]             | NR/GI [34]                    | SNR <sub>0/1</sub> [35]       | LP [8]                        | SP [8]            | LP [8]            | SP [8]            | This Analysis                                                               |
| ψ(3686)             | χ <sub>c</sub> 0<br>χ <sub>c1</sub><br>χ <sub>c2</sub> | 26.3<br>22.9<br>18.2 | 63/26<br>54/29<br>38/24       | 74/25<br>62/36<br>43/34       | 27<br>45<br>36                | 26<br>48<br>44    | 22<br>42<br>38    | 22<br>45<br>46    | $\begin{array}{c} 26.9 \pm 1.8 \\ 28.3 \pm 1.9 \\ 27.5 \pm 1.7 \end{array}$ |
| χc0<br>χc1<br>χc2   | $J/\psi$                                               | 121<br>265<br>327    | 152/114<br>314/239<br>424/313 | 167/117<br>354/244<br>473/309 | 141<br>269<br>327             | 146<br>278<br>338 | 172<br>306<br>284 | 179<br>319<br>292 | $\begin{array}{c} 306\pm23\\ 363\pm41 \end{array}$                          |

Experimental results have become accurate enough to become sensitive to fine details of the potentials, e.g. relativistic effects, screening effects, and higher partial waves.

### Measurement of higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ with $\chi_{c1,2} \rightarrow \gamma J/\psi$ and search for the transition $\eta_c(2S) \rightarrow \gamma J/\psi$ PRD 95, 072004 (2017)



The normalized M2( $\chi_{c1,2}$ ) and E3( $\chi_{c2}$ ) contribution The statistical significance of nonpure E1 transition is 24.3 $\sigma(13.4\sigma)$  for  $\chi_{c1}(\chi_{c2})$ 



Magnetic Quadrupole Amplitude

### Measurement of higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ with $\chi_{c1,2} \rightarrow \gamma J/\psi$ and search for the transition $\eta_c(2S) \rightarrow \gamma J/\psi$ PRD 95, 072004 (2017)

A simultaneous fit to invariant mass distribution



 $\begin{array}{l} \rightarrow \gamma \chi_{c0}) \cdot \mathcal{B}(\chi_{c0} \rightarrow \gamma J/\psi) & 15.8 \pm 0.3 \pm 0.6 \\ \rightarrow \gamma \chi_{c1}) \cdot \mathcal{B}(\chi_{c1} \rightarrow \gamma J/\psi) & 351.8 \pm 1.0 \pm 12.0 \\ \rightarrow \gamma \chi_{c2}) \cdot \mathcal{B}(\chi_{c2} \rightarrow \gamma J/\psi) & 199.6 \pm 0.8 \pm 7.0 \end{array}$ 

Branching fraction measurement ( $\times 10^{-4}$ )

 $\mathcal{B}(\psi' \rightarrow \gamma \eta_c(2S)) \cdot \mathcal{B}(\eta_c(2S) \rightarrow \gamma J/\psi)$ < 9.7 × 10<sup>-6</sup> at 90% C.L.

 $\chi_{c2}$ 

220

8

### Observation of $\psi(3686) \rightarrow e^+e^-\chi_{cJ}$ and $\chi_{cJ} \rightarrow e^+e^-J/\psi$

![](_page_8_Figure_1.jpeg)

Study of  $J/\psi$  and  $\psi(3686)$  decay to  $\Lambda\overline{\Lambda}$  and  $\Sigma^0\overline{\Sigma}^0$  final states

- ➤ Test of the "12% rule"
- Test of the helicity conservation rule
- > First or more precise measurement

![](_page_9_Figure_4.jpeg)

![](_page_9_Figure_5.jpeg)

## Study of $J/\psi$ and $\psi(3686)$ decay to $\Lambda\overline{\Lambda}$ and $\Sigma^0\overline{\Sigma}^0$ final states

#### Test of the "12% rule"

 $\frac{\mathcal{B}(\psi(3686) \to \Sigma^0 \bar{\Sigma}^0)}{\mathcal{B}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)} = (20.96 \pm 0.27 \pm 0.92)\%$ 

## $\frac{\mathcal{B}(\psi(3686) \to \Lambda\bar{\Lambda})}{\mathcal{B}(J/\psi \to \Lambda\bar{\Lambda})} = (20.43 \pm 0.11 \pm 0.58)\% \text{ PRD 95, 052003 (2017)}$

#### Results for this work

Theoretical prediction and previous measurements of  $\alpha$ 

| Channel                                   | α                            | $\mathcal{B}$ (×10 <sup>-4</sup> ) |
|-------------------------------------------|------------------------------|------------------------------------|
| $J/\psi \to \Lambda \bar{\Lambda}$        | $0.469 \pm 0.026 \pm 0.008$  | $19.43 \pm 0.03 \pm 0.33$          |
| $J/\psi  ightarrow \Sigma^0 ar{\Sigma}^0$ | $-0.449 \pm 0.020 \pm 0.008$ | $11.64 \pm 0.04 \pm 0.23$          |
| $\psi(3686) \to \Lambda \bar{\Lambda}$    | $0.82 \pm 0.08 \pm 0.02$     | $3.97 \pm 0.02 \pm 0.12$           |
| $\psi(3686) \to \Sigma^0 \bar{\Sigma}^0$  | $0.71 \pm 0.11 \pm 0.04$     | $2.44 \pm 0.03 \pm 0.11$           |

|            | $lpha_{J/\psi 	o \Lambda ar{\Lambda}}$ | $lpha_{J/\psi  ightarrow \Sigma^0 ar{\Sigma}^0}$ |
|------------|----------------------------------------|--------------------------------------------------|
| Theory     | 0.32                                   | 0.31 [16]                                        |
| Theory     | 0.51                                   | 0.43 [17]                                        |
| Experiment | $0.72\pm0.36$                          | $0.70 \pm 1.10$ [5]                              |
| Experiment | $0.62\pm0.22$                          | $0.22 \pm 0.31$ [6]                              |
|            | $0.65\pm0.14$                          | $-0.22 \pm 0.19$ [10]                            |

#### Branching fraction results of other experiments

|                             | $J/\psi  ightarrow \Lambda ar{\Lambda}$ | $\psi(3686) \to \Lambda \bar{\Lambda}$ | $J/\psi  ightarrow \Sigma^0 ar{\Sigma}^0$ | $\psi(3686) \rightarrow \Sigma^0 \bar{\Sigma}^0$ |
|-----------------------------|-----------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------|
| MARKII Collaboration [5]    | $15.8 \pm 0.8 \pm 1.9$                  |                                        | $15.8 \pm 1.6 \pm 2.5$                    |                                                  |
| DM2 Collaboration [6]       | $13.8 \pm 0.5 \pm 2.0$                  |                                        | $10.6 \pm 0.4 \pm 2.3$                    |                                                  |
| BES Collaboration [7,8]     | $10.8 \pm 0.6 \pm 2.4$                  | $1.8\pm0.2\pm0.3$                      |                                           | $1.2\pm0.4\pm0.4$                                |
| CLEO Collaboration [9]      |                                         | $3.3\pm0.3\pm0.3$                      |                                           | $2.6\pm0.4\pm0.4$                                |
| BESII Collaboration [10,11] | $20.3 \pm 0.3 \pm 1.5$                  | $3.4 \pm 0.2 \pm 0.4$                  | $13.3 \pm 0.4 \pm 1.1$                    | $2.4\pm0.4\pm0.4$                                |
| BABAR Collaboration [12]    | $19.3 \pm 2.1 \pm 0.5$                  | $6.4 \pm 1.8 \pm 0.1$                  | $11.5 \pm 2.4 \pm 0.3$                    |                                                  |
| Dobbs et al. [13]           |                                         | $3.8\pm0.1\pm0.3$                      |                                           | $2.3\pm0.2\pm0.2$                                |
| PDG [15]                    | $16.1\pm1.5$                            | $3.6\pm0.2$                            | $12.9\pm0.9$                              | $2.3\pm0.2$                                      |
|                             |                                         |                                        |                                           |                                                  |

Study of  $J/\psi$  and  $\psi(3686) \rightarrow \Sigma(1385)^0 \overline{\Sigma}(1385)^0$  and  $\Xi^0 \overline{\Xi}^0$ 

PLB 770, 217 (2017)

(a)

(b)

(c)

(d)

-0.0 cosθ

-0.4

4000

30000

- Test of the "12% rule"
- Test of the helicity conservation rule
- First or more precise measurement
- Test of isospin symmetry

![](_page_11_Figure_5.jpeg)

## Study of $J/\psi$ and $\psi(3686) \rightarrow \Sigma(1385)^0 \overline{\Sigma}(1385)^0$ and $\Xi^0 \overline{\Xi}^0$

#### Test of the "12% rule"

 $\frac{\mathcal{B}(\psi(3686) \to \Sigma(1385)^{0} \bar{\Sigma}(1385)^{0})}{\mathcal{B}(J/\psi \to \Sigma(1385)^{0} \bar{\Sigma}(1385)^{0})} = (6.44 \pm 0.47 \pm 0.64)\%$  $\frac{\mathcal{B}(\psi(3686) \to \Xi^{0} \bar{\Xi}^{0})}{\mathcal{B}(J/\psi \to \Xi^{0} \bar{\Xi}^{0})} = (23.43 \pm 0.26 \pm 1.09)\%$ 

#### PLB 770, 217 (2017)

#### Test of isospin symmetry

| Mode           | $\frac{\mathcal{B}(\psi \to \Xi^0 \bar{\Xi}^0)}{\mathcal{B}(\psi \to \Xi^- \bar{\Xi}^+)}$ | $\frac{\mathcal{B}(\psi \rightarrow \Sigma (1385)^0 \bar{\Sigma} (1385)^0)}{\mathcal{B}(\psi \rightarrow \Sigma (1385)^- \bar{\Sigma} (1385)^+)}$ | $\frac{\mathcal{B}(\psi \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0)}{\mathcal{B}(\psi \to \Sigma(1385)^+ \bar{\Sigma}(1385)^-)}$ |
|----------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| J/ψ<br>ψ(3686) | $\begin{array}{c} 1.12 \pm 0.01 \pm 0.07 \\ 0.98 \pm 0.02 \pm 0.07 \end{array}$           | $\begin{array}{c} 0.98 \pm 0.01 \pm 0.08 \\ 0.81 \pm 0.12 \pm 0.12 \end{array}$                                                                   | $\begin{array}{c} 0.85 \pm 0.02 \pm 0.09 \\ 0.82 \pm 0.11 \pm 0.11 \end{array}$                                               |

#### **Branching fractions**

| Mode              | $J/\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0$ | $J/\psi\to \Xi^0\bar{\Xi}^0$ | $\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$ | $\psi(3686)\to \Xi^0\bar{\Xi}^0$ |
|-------------------|----------------------------------------------------|------------------------------|------------------------------------------------------|----------------------------------|
| This work         | $10.71 \pm 0.09 \pm 0.82$                          | $11.65 \pm 0.04 \pm 0.43$    | $0.69 \pm 0.05 \pm 0.05$                             | $2.73 \pm 0.03 \pm 0.13$         |
| BESII [23]        | -                                                  | $12.0 \pm 1.2 \pm 2.1$       | -                                                    | -                                |
| CLEO [24]         | -                                                  | -                            | _                                                    | $2.75 \pm 0.64 \pm 0.61$         |
| Dobbs et al. [25] | -                                                  | -                            | _                                                    | $2.02 \pm 0.19 \pm 0.15$         |
| PDG [4]           | -                                                  | $12.0\pm2.4$                 | -                                                    | $2.07\pm0.23$                    |

#### Angular distributions

| Mode                | $J/\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0$ | $J/\psi\to \Xi^0\bar{\Xi}^0$ | $\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$ | $\psi(3686)\to \Xi^0\bar{\Xi}^0$ |
|---------------------|----------------------------------------------------|------------------------------|------------------------------------------------------|----------------------------------|
| This work           | $-0.64 \pm 0.03 \pm 0.10$                          | $0.66 \pm 0.03 \pm 0.05$     | $0.59 \pm 0.25 \pm 0.25$                             | $0.65 \pm 0.09 \pm 0.14$         |
| Carimalo et al. [6] | 0.11                                               | 0.16                         | 0.28                                                 | 0.33                             |
| Claudson [7]        | 0.19                                               | 0.28                         | 0.46                                                 | 0.53                             |

### Observation of $h_c$ radiative decay $h_c \rightarrow \gamma \eta'$ and evidence for $h_c \rightarrow \gamma \eta$

![](_page_13_Figure_1.jpeg)

- All charmonium below the DD threshold have been observed experimentally and can be well described by potential models. However, knowledge is still sparse on the P-wave spin-singlet state h<sub>c</sub>.
- ➢ Only a few decay modes of h<sub>c</sub> have been observed, radiative transition h<sub>c</sub> →  $\gamma\eta_c$  ( $\mathcal{B}\sim 50\%$ ) and hadronic decay h<sub>c</sub> →  $2(\pi^+\pi^-)\pi^0$  ( $\mathcal{B}\sim 2\%$ ). Searches for new h<sub>c</sub> decay modes, such as h<sub>c</sub> →  $\gamma\eta(\eta')$ , are useful for providing constraints to theoretical models.
- ➤ The ratio of the branching fraction  $\mathcal{B}(h_c \rightarrow \gamma \eta)$  over  $\mathcal{B}(h_c \rightarrow \gamma \eta')$  can also be used to study the  $\eta$ - $\eta'$  mixing angle, which is important to test SU(3)-flavor symmetries in QCD.

Observation of  $h_c$  radiative decay  $h_c \rightarrow \gamma \eta'$  and evidence for  $h_c \rightarrow \gamma \eta$ 

![](_page_14_Figure_1.jpeg)

| $ \begin{array}{l} h_c \to \gamma \eta' \ 44.3 \pm 7.8(\text{stat.}) \ 7.67 \pm 0.38(\text{sys.}) \\ h_c \to \gamma \eta \ 18.1 \pm 5.8(\text{stat.}) \ 10.22 \pm 0.55(\text{sys.}) \end{array} \begin{array}{l} (1.52 \pm 0.27(\text{stat.}) \pm 0.29(\text{sys.})) \times 10^{-3} \\ (4.7 \pm 1.5(\text{stat.}) \pm 1.4(\text{sys.})) \times 10^{-4} \end{array} \begin{array}{l} 8.4\sigma \\ 4.0\sigma \end{array} $ | Mode                                                                       | $N_{h_c \to \gamma \eta'(\eta)}$                 | $W_{\eta'(\eta)}(\times 10^{-2})$                 | $\mathcal{B}(h_c \to \gamma \eta'(\eta))$                                                                                                | Significance               | $\frac{\mathcal{B}(h_c \to \gamma \eta)}{\mathcal{B}(h_c \to \gamma \eta')} (\%)$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} h_c \to \gamma \eta' \\ h_c \to \gamma \eta \end{array}$ | $44.3 \pm 7.8$ (stat.)<br>$18.1 \pm 5.8$ (stat.) | $7.67 \pm 0.38$ (sys.)<br>$10.22 \pm 0.55$ (sys.) | $(1.52 \pm 0.27 (\text{stat.}) \pm 0.29 (\text{sys.})) \times 10^{-3} (4.7 \pm 1.5 (\text{stat.}) \pm 1.4 (\text{sys.})) \times 10^{-4}$ | $8.4\sigma$<br>$4.0\sigma$ | $30.7 \pm 11.3 (\text{stat.} 15^{-8.7} (\text{sys.})$                             |

## Improved measurements of branching fractions for $\eta_c \rightarrow \phi \phi$ and $\omega \phi$

- > Knowledge of the  $\eta_c$  properties is still relatively poor
- $\succ$  Help understand the  $\eta_c$  decay mechanism
- > More precise measurement

![](_page_15_Figure_4.jpeg)

![](_page_15_Figure_5.jpeg)

PRD 95, 092004 (2017)

The measured  $\mathcal{B}(\eta_c \rightarrow \phi \phi)$  is close to the predictions of the  ${}^{3}P_0$  quark model and the meson loop effects.

![](_page_16_Picture_0.jpeg)

## Summary

![](_page_16_Picture_2.jpeg)

- > BESIII has collected the largest data samples of  $J/\psi$  and  $\psi(3686)$  in the world, and continues to take data
- > It is an excellent laboratory to study charmonium spectroscopy:
  - High statistics
  - Low background
- Many interesting results have been obtained, only few of them are covered in this talk
- Future:
  - More data will be collected
  - More detailed studies will be done

## More results will come out !!!

## Thanks for your attention!