

XYZ STATES AT BESIII

Junhao YIN (on behalf of BESIII collaboration) Institute of High Energy Physics, CAS PANIC 2017, Beijing, China, Sep. 1st

Outline

- Introduce to exotic states
- BESIII experimental results
 - Results on X states
 - Results on Y states
 - Results on Z states

Summary and Outlook

Charmonium Spectroscopy

- Potential model works well in describing the higher quarkonia states.
 - Masses of the charmonium states below open-charm thresold matches predictions.
 - Many predicted states above the threshold but not discovered.

Charmonium Spectroscopy

- Potential model works well in describing the higher quarkonia states.
 - Masses of the charmonium states below open-charm thresold matches predictions.
 - Many predicted states above the threshold but not discovered.
- An abundance of states discovered in recent years beyond prediction.

Charmonium Spectroscopy

- Potential model works well in describing the higher quarkonia states.
 - Masses of the charmonium states below open-charm thresold matches predictions.
 - Many predicted states above the threshold but not discovered.
- An abundance of states discovered in recent years beyond prediction.
 - ▶ Transitions to *cc* final states
 - Charmonium-like or XYZ states

BEPCII & BESIII

BESIII dataset for XYZ study

XYZ data

- $\sim 12 \text{ fb}^{-1}$ total
- Massive sample collected around 4.260 GeV
- R Scan data
 - 3.85 4.59 GeV.
 - 104 points, ~8 pb⁻¹ each.

X States: $e^+e^- \rightarrow \gamma X(3872)$

Four energy points from 4.009 to 4.360 GeV

Calibrated by ψ' , $M = (3871.9 \pm 0.7_{stat.} \pm 0.2_{sys.}) \text{ MeV/c}^2$ $\Gamma < 2.4 \text{ MeV} (90\% \text{ C. L.})$

X States: $e^+e^- \rightarrow \gamma X(3872)$

Angular distribution agree with *E*1 transition between *Y*(4260) and *X*(3872). A dominant ρ^0 resonance contribution.

The *Y*(4260) describes better than other two hypothesis.

X States: $e^+e^- \rightarrow \gamma X(3872)$

Angular distribution agree with *E*1 transition between *Y*(4260) and *X*(3872). A dominant ρ^0 resonance contribution.

The *Y*(4260) describes better than other two hypothesis.

With more data taken in last year, we can investigate more on the relation between the exotic X(3872) and Y(4260).

X States: $e^+e^- \rightarrow \pi\pi X(3823)$

X States: $e^+e^- \rightarrow \pi\pi X(3823)$

PANIC 2017

RESULTS ON

P

10

 e^+

Y State: some history

The Y(4260) state is first observed by BaBar and confirmed by Belle in $\pi\pi J/\psi$ mass spectrum.

Y State: some history

Y State: some history

The Y(4260) states are first observed by BaBar and confirmed by Belle in $\pi\pi J/\psi$ mass spectrum.

Y(4008)?

Y(4360) and *Y*(4660) are found in $\pi\pi\psi(2S)$ spectrum.

Y State: $e^+e^- \rightarrow \pi\pi\psi(2S)$

NEW: BESIII preliminary result vs. Belle

- Clear indication of the Y(4360) and Y(4660) in $\psi(2S)\pi^{-}\pi^{+}$
- Significance of Y(4260) <3σ

- BESIII confirms Y(4360) lineshape
- More data for thourough study of mass region 4.2 - 4.3GeV (current data taking)

Y State: $e^+e^- \rightarrow \pi\pi\psi(2S)$

NEW: BESIII preliminary result vs. Belle

region 4.2 - 4.3GeV (current data taking)

Significance of Y(4260) <3σ

Y State: $e^+e^- \rightarrow \omega \chi_{c0}$

9 energy points are used. $e^+e^- \rightarrow \omega \chi_{c0}$ are observed at $\sqrt{s} = 4.23$ and 4.26 GeV. Lineshape in consistent with Y(4260)

 $M = 4230 \pm 8 \pm 6 \text{ MeV/c}^2, \Gamma = 38 \pm 12 \pm 2 \text{ MeV}$

Limited by the statistics, it's difficult to tell $\omega \chi_{c0}$ comes from *Y*(4260) or ψ (4160).(**PRD91, 034004**)

Y State: $e^+e^- \rightarrow \pi\pi J/\psi$

Performed with two data sets: XYZ data and R scan data; Energy dependent cross sections are fitted simultaneously.

Two resonances are observed with $> 7.6 \sigma$

 \succ M₁ = 4222.0 ± 3.1 ± 1.4 MeV, Γ₁ = 44.1 ± 4.3 ± 2.0 MeV

> Agree with Y(4260) but with much narrower width;

 \blacktriangleright M₂ = 4320.0 ± 10.4 ± 7.0 MeV, Γ₂ = 101.4^{+25.3}_{-19.7} ± 10.2 MeV

Seen for the first time; A new decay mode if it is *Y*(4360).

Y(4008) is not confirmed.

Y State: $e^+e^- \rightarrow \pi\pi h_c$

Energy dependent cross sections can not be fitted with a single peak. Two resonances $> 10 \sigma$.

- \blacktriangleright M₁ = 4218.4^{+5.5}_{-4.5} ± 0.9 MeV, Γ₁ = 66.0^{+16.2}_{-20.6} ± 0.4 MeV
 - > Agree with Y(4220) in $\pi\pi J/\psi$ analysis; quite different with Y(4260) from PDG.
- \succ M₂ = 4391.5^{+6.3}_{-4.5} ± 0.9 MeV, Γ₂ = 139.5^{+16.2}_{-20.6} ± 0.4 MeV

Y State: $e^+e^- \rightarrow \pi^+D^0D^{*-}$

Two resonant structures are observed:

- *1.* $M_1 = 4224.8 \pm 5.6 \pm 4.0$ MeV, $\Gamma_1 = 72.3 \pm 9.1 \pm 0.9$ MeV
 - Seen in $\pi\pi h_c$, $\pi\pi J/\psi$, $\omega\chi_{c0}$
- 2. $M = 4400.1 \pm 9.3 \pm 2.1$ MeV, $\Gamma = 181.7 \pm 16.9 \pm 7.4$ MeV
 - Seen in $\pi\pi h_c$

The mass of Y(4220) is 30 MeV lower than Y(4260), but consistent with $DD_1(2420)$ molecule interpretation within errors (PRD 90, 074039; PRD 73, 094510).

RESULTS ON D^*

Z State: observed

Several Z_c states have been observed in $c\bar{c}$ and open charm states.

Z State: $Z_c \rightarrow \pi^{\pm,0} \psi(2S)$

- A narrow structure is observed at $\sqrt{s} = 4.416$ GeV.
- But it looks much more complex looking at the Dalitz plots.

Larger datasets and additional theoretical input are necessary!

Z State: $Z_c \rightarrow \pi^{\pm,0} \psi(2S)$

Larger datasets and additional theoretical input are necessary!

Junhao YIN

Z State: BESIII results for Z_c family

	C/N	Channel	Mass (MeV/ c^2)	Width (MeV)	σ _{Born} @ 4260 (pb)
Z _c (3900)	Charged	$\pi^{\pm}J/\psi$	3899.0 ± 3.6 ± 4.9	$46 \pm 10 \pm 20$	13.5 ± 5.2
	Neutral	$\pi^0 J/\psi$	3894.8 ± 2.3 ± 2.7	29.6 ± 8.2 ± 8.2	4.0 ± 0.9
Z _c (3885)	Charged	$(D\overline{D}^*)^{\pm}$	$3881.7 \pm 1.6 \pm 1.6$	$26.6 \pm 2.0 \pm 2.1$	$108.4 \pm 6.9 \pm 8.8$
	Neutral	$(D\overline{D}^*)^0$	$3885.7^{+4.3}_{-5.7} \pm 8.4$	$35^{+11}_{-12} \pm 15$	$47 \pm 9 \pm 10$
<i>Z_c</i> (4020)	Charged	$\pi^{\pm}h_c$	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	$7.4 \pm 1.7 \pm 2.1 \pm 1.2$
	Neutral	$\pi^0 h_c$	$4023.9 \pm 2.2 \pm 3.8$	Fixed	$8.5 \pm 2.9 \pm 1.1 \pm 1.3$
<i>Z_c</i> (4025)	Charged	$(D^*\overline{D}^*)^{\pm}$	$4026.3 \pm 2.6 \pm 3.7$	24.8 ± 5.6 ± 7.7	89.0 ± 18.7
	Neutral	$(D^*\overline{D}^*)^0$	$4025.5^{+2.0}_{-4.7} \pm 3.1$	$23.0 \pm 6.0 \pm 1.0$	$43.4 \pm 8.0 \pm 5.4$
<i>Z_c</i> (4030)	Charged	$\pi^{\pm}\psi(2S)$	4032.1 ± 2.4	26.1 <u>+</u> 5.3	-
	Neutral	$\pi^0\psi(2S)$	4038.7 ± 6.5	-	-

Z State: Determination of J^P of $Z_c(3900)$

Amplitude of PWA:

 $A = |A(\sigma J/\psi) + A(f_0 J/\psi) + A(f_0 (1370)J/\psi) + A(f_2 (1270)J/\psi) + A(Z_c \pi)|$

Dataset: 4.23 & 4.26 GeV Z_c is described better with a Flatte-like formula:

$$BW(s, M, g'_1, g'_2) = \frac{1}{s - M^2 + i[g'_1\rho_1(s) + g'_2\rho_2(s)]}$$

Hypothesis	$\Delta(-2\ln L)$	$\Delta(ndf)$	Significance
1 ⁺ over 0 ⁻	94.0	13	7.6 <i>o</i>
1^+ over 1^-	158.3	13	10.8σ
1 ⁺ over 2 ⁻	151.9	13	10.5σ
1^+ over 2^+	96.0	13	7.7σ

Z State: Determination of J^P of $Z_c(3900)$

Amplitude of PWA:

 $A = |A(\sigma J/\psi) + A(f_0 J/\psi) + A(f_0(1370)J/\psi) + A(f_2(1270)J/\psi) + A(Z_c\pi)|$

Summary & Outlook

- BESIII provide new route to access XYZ states by e⁺e⁻ annihilation.
 Our understanding of XYZ has been significantly improved.
 - BESIII observe XYZ states, X(3823), Y(4220), Y(4390), Zc(3900)...
 - BESIII measure XYZ states, X(3872), Y(4360), J^P of Zc(3900)...
 - Two isospin triplet states *Zc*(3900), *Zc*(4020) established.
- There are still puzzles.
 - Complex structures and difficult to describe; Even Y(4260) in $\pi\pi J/\psi$ no longer looks like a simple peak.
 - Their nature is still unknown.
- More data taking is needed!

BACK UP

ISR @ Belle II vs. BESIII

Z State: BESIII results for Z_c family

	C/N	Channel	Mass (MeV/ c^2)	Width (MeV)	<i>B_{relative}</i> @ 4260 (%)
Z _c (3900)	Charged	$\pi^{\pm}J/\psi$	$3899.0 \pm 3.6 \pm 4.9$	$46 \pm 10 \pm 20$	7.8 ± 3.0
	Neutral	$\pi^0 J/\psi$	$3894.8 \pm 2.3 \pm 2.7$	$29.6 \pm 8.2 \pm 8.2$	2.3 ± 0.5
Z _c (3885)	Charged	$(D\overline{D}^*)^{\pm}$	$3881.7 \pm 1.6 \pm 1.6$	$26.6 \pm 2.0 \pm 2.1$	62.7±6.5
	Neutral	$(D\overline{D}^*)^0$	$3885.7^{+4.3}_{-5.7} \pm 8.4$	$35^{+11}_{-12} \pm 15$	27.2 ± 7.8
<i>Z_c</i> (4020)	Charged	$\pi^{\pm}h_c$	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	5.0 ± 2.0
	Neutral	$\pi^0 h_c$	$4023.9 \pm 2.2 \pm 3.8$	Fixed	5.7 ± 2.3
<i>Z_c</i> (4025)	Charged	$(D^*\overline{D}^*)^{\pm}$	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$	60.0 ± 12.6
	Neutral	$(D^*\overline{D}^*)^0$	$4025.5^{+2.0}_{-4.7}\pm3.1$	$23.0 \pm 6.0 \pm 1.0$	29.3 ± 15.2
<i>Z_c</i> (4030)	Charged	$\pi^{\pm}\psi(2S)$	4032.1 ± 2.4	26.1 ± 5.3	-