THE NEW CYLINDRICAL GEM INNER TRACKER OF BESIII

On behalf of the CGEM-IT group

The 21st Particle and Nuclei International Conference 北京 2017年9月1-5日

SUMMARY

• What is a GEM

• Description of the CGEM-IT project for BESIII

• CGEM-IT peculiarities

• Results from test beams

The project BESIIICGEM was funded by European Commission call H2020-MSCA-RISE-2014 INFN (Torino, Ferrara, Frascati), Mainz, Uppsala, IHEP

WHAT IS A "GEM"?

THE AVALANCHE MULTIPLICATION

By applying a potential of some hundreds V, an electric field of some tens kV/cm is created in the holes \rightarrow avalanche multiplication

By applying a lower voltage on each GEM and with a series of three GEM foils higher gain values ($\sim 10^3$ - 10^4) with lower discharge rates can be obtained

- 1. Ionization & drift
- 2. Multiplication
- 3. Multiplication
- 4. Multiplication
- 5. Signal induction

THE CGEM-IT PROJECT

CGEM-IT: WHERE AND WHY?

• BESIII is a τ -charm factory

- Installed @ BEPCII, Beijing, PRC
- e⁺e⁻ collisions
- Beam energy 1-2.3 GeV
- Data taking since 2009 up to 2022
- ...maybe 2027!

PANIC17

CURRENT IT: 8 (in) + 35 (out) layers in a Main Drift Chamber

- momentum resolution
 r-φ spatial resolution
 azimuthal coord. res.
- 0.5% @1 GeV/c 130 μm
- 2 mm

....BUT...

CGEM-IT: WHERE AND WHY?

.05

• BESIII is a τ-charm factory

- Installed @ BEPCII, Beijing, PRC
- $\circ e^+e^-$ collisions
- Beam energy 1-2.3 GeV
- Data taking since 2009 up to 2022
- ...maybe 2027!

2	2016/04/05 2	2:29:47	
Lumino	e+	E32/cm^2/s	
Energy [GeV]	1.8831	1.8831	
Current [mA]	849.18	852.31	
Lifetime [hr]	1.53	2.30	
Inj.Rate [mA/min]	0.00	0.00	

Continuous luminosity increasing

MDC inner layers suffer from aging

CGEM-IT: ...AND WHAT IS IT?

CYLINDRICAL GAS **ELECTRON MULTIPLIER** INNER TRACKER

10

CGEM-IT: ...AND WHAT IS IT?

PANIC17

GEOMETRICAL REQUIREMENTS

- inner radius 78 mm
- outer radius 179 mm
- angular coverage 93%
- $X_0 < 1.5 \%$
- particle rate ~ 10^4 Hz/cm²
- anode with axial & tilted strips

FUTURE IT: 3 layers of cylindrical triple-GEMs

CGEM-IT: ...AND WHAT IS IT?

WHY THE CHOICE OF THE GEM

- low spatial charge
- high rate capability
- fast response
- light support frame (self-sustaining GEM foils)

FUTURE IT: 3 layers of cylindrical triple-GEMs

ADVANTAGES

PANIC17

GUARANTEES

- restore efficiency
- improve the resolutions
 - on z coordinate [< 1 mm]
 - on secondary vertices

- keep the resolution
 - on trasverse plane [130 μm]
 - on momentum [0.5% @1 GeV/c]
- Low material budget [X0 < 1.5%]

THE CGEM-IT PROJECT THE GOAL

PANIC17

OBJECTIVES

PANIC17

1. WITH THE SIMULTANEOUS MEASUREMENT OF CHARGE & TIME

- 2. INSIDE A MAGNETIC FIELD OF 1 T
- **3.** WITH A JAGGED ANODE

The first cylindrical triple GEM was built and installed for KLOE-2 (Frascati) with digital readout in 0.5T. The achieved resolution is 350 µm [arXiv:1002:2572] BESIII inherits the construction procedure and adds improvements

WE WILL EXPLOIT LEGACY & INNOVATIONS

LEGACY & INNOVATIONS

The first cylindrical triple GEM was built and installed for KLOE-2 (Frascati): BESIII inherits the construction procedure and adds improvements

The GEM foil is produced @ CERN in plane

PANIC17

One layer is inserted into the other in the Vertical Inserting Machine ©KLOE-2

LEGACY & INNOVATIONS

The first cylindrical triple GEM was built and installed for KLOE-2 (Frascati): BESIII inherits the construction procedure and adds improvements

MECHANICS:

ROHACELL31 to sustain anode & cathode Permaglass rings only out the active area

ELECTRONICS:

- Dedicated ASIC Torino Integrated GEM Electronics for Readout (TIGER)
- Anode with Jagged strips, to decrease of ~30% the inter-strip capacitance

THE CGEM-IT PROJECT THE POSITION RECONSTRUCTION

PROCESSES OF INTEREST

CHARGE DISTRIBUTION @ANODE

Depending on the shape of the charge distribution at the anode two reconstruction methods can be used

DIFFUSION

The effect of the **gas mixture** on the drifting electrons is to deviate their path (multiple scattering) due to the diffusion: this creates an charge distribution on the anode lighting more than one strip

LORENTZ FORCE

PANIC17

The presence of the **magnetic field** on the drifting electrons is to curve their trajectory due to the Lorentz force. This moves the charge distribution at anode from the Gaussian shape

METHODS FOR RECONSTRUCTION

CHARGE CENTROID

The position is reconstructed as weighted average of the fired strip by the charge on each strip

MICRO-TPC [M. lodice, JINST, 9 C01017, 2014]

^{30de} Use the Drift Gap as a "micro time projection ³³ chamber" and reconstruct the position of each ³² primary ionization by knowing the drift velocity

THE CGEM-IT PROJECT THE TESTBEAMS

TEST BEAM ENVIRONMENT

WHERE

• H4 beam line @ SPS, North Area, CERN

MAGNETIC FIELD

• GOLIATH dipole in [-1.5, +1.5] T

BEAM

• muons/pions @150 GeV/c

PANIC17

- 10×10 cm² triple GEM
 x/y views
- strip pitch 650 μm
- gas mixtures:
 - Ar/CO2 (70/30%)
 - Ar/Iso (90/10%)

ASIC APV-25

OCTOBER 2016 1ST CGEM TEST BEAM

Ar/CO2 (70/30%)
x & v views
3 mm drift gap

And additional tests:

on high intensity electron beam @MAMI – cosmic rays @ Frascati & Ferrara JULY 2017 – LAYER 1 TEST BEAM

PANIC17

CHARGE DISTRIBUTION @ANODE

Depending on the shape of the charge distribution at the anode two reconstruction methods can be used

PANIC17

CHARGE DISTRIBUTION @ANODE

Depending on the shape of the charge distribution at the anode two reconstruction methods can be used

CHARGE Dependi the anod

PANIC17

CHARGE DISTRIBUTION @ANODE

Depending on the shape of the charge distribution at the anode two reconstruction methods can be used

PANIC17

CHARGE DISTRIBUTION @ANODE

Depending on the shape of the charge distribution at the anode two reconstruction methods can be used

METHODS FOR RECONSTRUCTION

CHARGE DISTRIBUTION @ANODE

Depending on the shape of the charge distribution at the anode two reconstruction methods can be used

INCLINED TRACKS IN B = 0

The cluster size increases for more inclined tracks: the three GEMs amplify the number of electrons and the gas diffusion enlarges the avalanche size with a shape that is not Gaussian.

 \rightarrow The CC degrades its performance, while the μ -TPC improves

PANIC17

ORTHOGONAL TRACKS IN B \neq **0**

The cluster size increases and the distribution is no longer Gaussian \rightarrow The CC degrades its performance, while the μ -TPC improves under increasing magnetic field

INCLINED TRACKS IN B \neq 0

It depends on the incident and Lorentz angle respective sign

INCLINED TRACKS IN B \neq **O CASE I**

INCLINED TRACKS IN B \neq **O CASE 2**

CASE 3 **INCLINED TRACKS IN B \neq 0**

INCLINED TRACKS IN B \neq 0

COMPARISON PLANAR/CYLINDER

• Orthogonal π tracks and B = 0

PANIC17

• The cluster size shows the number of the fired strips. This is related to the signal dimension then to the gain and the drift properties of the electrons

 ${\rm \circ}$ CC resolution shows that the CGEM and planar GEM performances are compatible within tens of μm

CONCLUSIONS

PLANAR CHAMBERS

Tested with and without magnetic field, with different gain (HV) and field values, with different gas mixtures. A combination of CC and μ -TPC reconstruction methods will provide the expected resolution in xy = 130 μ m

CYLINDRICAL CHAMBER

Showed high stability with different HV and fields, under high intensity π beam. Showed results comparable to the planar chambers without magnetic field

In July the *final layer 1* has been tested on the H4 line @ SPS, CERN

Further studies on efficiency and resolution ongoing on the cylinder

THE FULL CGEM-IT IS UNDER CONSTRUCTION IT WILL BE COMPLETED AND COMMISSIONED IN 2018

在北京明年见! 谢谢!

BESIII detector & physics

BEAM PIPE berillium MULTILAYER DRIFT CHAMBER dp/p ~ 0.5% @ 1 GeV/c TIME OF FLIGHT Time res = 90 ps **ELECTROMAGNETIC CALORIMETER** CsI, dE/E ~ 2.5% @ 1 GeV SOLENOID MAGNET Superconducting, 1 Tesla **MUON SYSTEM** RPC

- **Physics** program
- spectroscopy:
 - charmonium
 - charm
 - exotics0
 - light hadrons
- Form Factors
- τ physics

- CMS energy [2, 4.6] GeV
- Optimum @ 1.89 GeV
- Data rate = 5 kHz, 50 Mb/s

Triple GEM

Triple GEM are detectors where three GEM foils are arranged between anode and cathode, granting a final gain $\sim 10^3/10^4$ with lower voltages applied \rightarrow lower discharge rates

Example of HV		Thickness (mm)	Voltage (V)	Field (kV/cm)
and drift field	Cathode			
settings	Gap	3 or 5	375/625	1.25
Ar/CO2 70/30	G1_TOP			
	Gap	0.050	360	72
	G1_BOTTOM			
	Gap	2	600	3
2055 /2005 V	G2_TOP			
565575905 V	Gap	0.050	360	72
	G2_BOTTOM			
	Gap	2	600	3
	G3_TOP			
	Gap	0.050	360	72
	G3_BOTTOM			
	Gap	2	1000	5
	Anode		ground	

The x strips pitch is shrinked in coincidence of v strip crossings in order to decrease the inter-strip capacitance.

In figure:

• y axis: value of the capacitance at crossing between x and v strips (pF) from simulations

• x axis: value of the dimensions of the simulated area in MAXWELL

Study by I. Garzia – presented @ IEEE 2014

Readout @ testbeams

The ASIC used for the readout is the APV-25
Each APV has 128 channels, each one reads the charge and time of an anode strip
Each channel has a flash-ADC which performs 27 charge samplings (one every 25 ns). The highest value is the "hit" charge.

The number of bins in the charge axis is 2500 bins (-560; +1950)

A typical event lasts ~ 100 ns ($\rightarrow 4/5$ time bins)

- ASIC = Application Specific Integrated Circuit
- ▶ PCB = Printed Circuit Board
- APV = Analogue Pipeline Voltage mode 41

[M. Iodice, JINST, 9 C01017, 2014]

The µ–TPC mode

inclined tracks and/or magnetic field → increased cluster size → µ-TPC mode available
the drift gap is seen as a "*micro* time projection chamber" and the position of each primary ionization is reconstructed by knowing the electron drift velocity

Lorentz angle vs drift field Optimization of the charge centroid @ 1 Tesla

Field & angle

Results with angles and magnetic field

Spatial resolution is below 200 µm for very large angle interval

Expected entrance angle at the outer radius of CGEM-IT (primary vertex particles)

G. Mezzadri ~ presented @ MPGD 2017

TIGER

- Provide charge & time measurements \rightarrow analog readout
- Input charge: 1 50 fC
- Sensor Capacitance: up to 100 pF
- Rate per Channel: 60 kHz (safety factor of 4 included)
- Time resolution: **4~5 ns**
- Power consumption ~ 10 mW/channel
- Should be radiation tolerant for Single Event Upset

Front End

TIGER Design

- Charge Sensitive Amplifier + two shapers (Time and Charge)
 Time-based readout
- Single or double threshold readout
- Time stamp on rising/falling edge (sub-50 ps binning quad-buffered TDC)
- Charge measurement with Time-Over-Threshold

Time and amplitude sampling

- Time stamp on rising edge (sub-50 ps binning quad-buffered TDC)
- Sample-and-Hold circuit for peak amplitude sampling
- ightarrow Slow shaper output voltage is sampled and digitised with a 10-bit Wilkinson AD

Marcello ł presented @ CRETE2017