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WHAT IS A “GEM”? 
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Flow of a standard gas tracker: 
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Invented by F. Sauli in 1997 

Flow of a standard gas tracker: 

avalanche generation  



The avalanche multiplication 



1. Ionization & drift 

2. Multiplication 

4. Multiplication 

5. Signal induction 

3. Multiplication 



THE CGEM-IT PROJECT 



CURRENT IT: 8 (in) + 35 (out) 
layers in a Main Drift Chamber 

CGEM-IT: Where and why? 
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…BUT… 
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CGEM-IT: Where and why? 

Continuous luminosity increasing 
 
 

MDC inner layers suffer from aging 
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CGEM-IT: …and what is it? 
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CGEM-IT: …and what is it? 

FUTURE IT: 3 layers of cylindrical triple-GEMs 

Geometrical requirements 















CGEM-IT: …and what is it? 

Advantages 
 
  






Guarantees 
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FUTURE IT: 3 layers of cylindrical triple-GEMs 

Why the choice of the GEM 
 










THE CGEM-IT PROJECT 
The goal 



Objectives 

2. inside a magnetic field of 1 T 

3. with a jagged anode 

Operate the cylindrical triple GEM: 

We will exploit LEGACY & INNOVATIONS 

1. with the simultaneous 
measurement of charge & time 

m [arXiv:1002:2572]



Legacy & innovations 
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Legacy & innovations 

MECHANICS: 
 




ELECTRONICS: 
 






The position reconstruction 
THE CGEM-IT PROJECT 



Processes of interest 

Diffusion 

Lorentz force 

Charge distribution @anode 

 



Methods for reconstruction 

 

Charge Centroid 
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[M. Iodice, JINST, 9 C01017, 2014] 

micro-TPC 



THE CGEM-IT PROJECT 
The testbeams 



Test beam environment 

cylinder 
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October 2016 
1st CGEM test beam 

where 


magnetic field 
 

beam 
 

And additional tests: 
on high intensity electron beam @MAMI – cosmic rays @ Frascati & Ferrara 

planar 

July 2017 – Layer 1 test beam 



Track patterns 
Charge distribution @anode 

 

 



Track patterns 
Charge distribution @anode 
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B≠0 

 

 



Track patterns 
Charge distribution @anode 

orthogonal inclined 

 

 



Track patterns 
Charge distribution @anode 

orthogonal inclined 
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Methods for reconstruction 
Charge distribution @anode 

orthogonal inclined 
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Inclined tracks in b = 0 
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Orthogonal tracks in b ≠ 0 
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Inclined tracks in b ≠ 0 

CASE I CASE 2 CASE 3 
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CASE I 
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Lorentz 
Angle ~ 26° 

focusing 

CASE 2 
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CASE 3 



Inclined tracks in b ≠ 0 
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normal focusing de-focusing 

Charge  
Centroid Micro-TPC 



Comparison planar/cylinder 
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μ

cluster charge vs cluster size CC resolution vs cluster size 



Conclusions 
Planar chambers 

m

m

Cylindrical chamber 
p

The full CGEM-IT is under construction 
It will be completed and commissioned in 2018 

在北京明年见 ！       谢谢！ 



SPARE 



BESIII detector & physics 
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•

•

•  

Physics program 
•

•

•

•

•

•

• t 

Beam Pipe 

Multilayer Drift Chamber 

Time Of Flight 

Electromagnetic Calorimeter 

Solenoid Magnet 

Muon system 



Triple GEM 
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Triple GEM are detectors where three 

GEM foils are arranged between anode 

and cathode, granting a final gain 

~103/104 with lower voltages applied  

lower discharge rates 

[S. Bachmann et al, Nucl. Instr. and Meth A479 (2002) 294] 



Example of HV 

and drift field 

settings 

39 

Thickness  

(mm) 

Voltage 

(V) 

Field 

(kV/cm) 

Cathode 

Gap 3 or 5 375/625 1.25 

G1_TOP 

Gap 0.050 360 72 

G1_BOTTOM 

Gap 2 600 3 

G2_TOP 

Gap 0.050 360 72 

G2_BOTTOM 

Gap 2 600 3 

G3_TOP 

Gap 0.050 360 72 

G3_BOTTOM 

Gap 2 1000 5 

Anode  ground 

Ar/CO2 70/30 

3655/3905 V 



Jagged strips 

In figure:  

 y axis: value of the capacitance at 

crossing between x and v strips (pF) 

from simulations 

 x axis: value of the dimensions of the 

simulated area in MAXWELL 

The x strips pitch is shrinked in coincidence of v strip crossings in order to 

decrease the inter-strip capacitance. 

Study by I. Garzia – presented @ IEEE 2014 



Readout @ testbeams 

41 

APV 

 ASIC = Application Specific Integrated Circuit 

 PCB = Printed Circuit Board 

 APV = Analogue Pipeline Voltage mode 

 The ASIC used for the readout is the APV-25 

 Each APV has 128 channels, each one reads the 

charge and time of an anode strip 

 Each channel has a flash-ADC which performs 

27 charge samplings (one every 25 ns). The 

highest value is the “hit” charge.  

 The number of bins in the charge axis is 2500 

bins (-560; +1950) 

 A typical event lasts ~100ns (4/5 time bins) 



The mTPC mode 
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 inclined tracks and/or magnetic field  increased 

cluster size  m-TPC mode available 

 the drift gap is seen as a “micro time projection 

chamber” and the position of each primary ionization 

is reconstructed by knowing the electron drift velocity 

 STEP 1 

∀ strip fit time samples of 

the charge with a Fermi-

Dirac to extract the ti 

 STEP 2 

Dt resolution ~ 12 ns 

 STEP 3 

vDRIFT from ti distribution 

on 5 mm gap 

[M. Iodice, JINST, 9 C01017, 2014] 



Lorentz angle vs drift field 

43 

St
u

d
y
 b

y
 R

. 
Fa

ri
n

el
li

  
- 

p
re

se
n

te
d

 @
 I

E
E
E
 N

SS
/

M
IC

 2
0

1
6

 



Field & angle 
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G. Mezzadri - presented @ MPGD 2017 



TIGER 
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• Provide charge & time measurements  analog readout 

• Input charge: 1 – 50 fC 

• Sensor Capacitance: up to 100 pF 

• Rate per Channel: 60 kHz (safety factor of 4 included) 

• Time resolution: 4-5 ns 

• Power consumption ~ 10 mW/channel 

• Should be radiation tolerant for Single Event Upset 
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