The Higgs Boson Properties **Measurements by Combining Different Production and Decay** Channels

Simplified template cross sections

•
$$y_j = \sum_i A_{ji} \cdot r_i \cdot (\sigma_i \cdot B_{4l})_{SM} \cdot r_f \cdot \left(\frac{B_f}{B_{4l}}\right)_{SM} \cdot \mathcal{L}$$

- The framework reduces the reliance on the SM for cross-section measurements
- Higgs-boson rapidity y_H satisfying $|y_H| < 2.5$
- The merged STXS stage-1 regions

ATLAS preliminary

Results in the *κ* **framework**

• In order to characterize deviations from the SM expectations

•
$$\sigma(i \to H \to f) = \kappa_i^2 \sigma_i^{SM} \frac{\kappa_f^2 \Gamma_f^{SM}}{\kappa_H^2 \Gamma_H^{SM}}$$

• The individual channel measurements are combined to obtain confidence intervals for the κ_i coefficients

2.5		1.5 ₋	
SM prediction	ATLAS Preliminary	SM prediction	ATLAS Preliminary
– – ● Best fit	√ <i>s</i> = 13 TeV, 36.1 fb ⁻¹	1.4 Best fit	\sqrt{s} = 13 TeV, 36.1 fb ⁻¹
2 — — Combined 68% CL	$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$	1.3 68% CL	$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I^{-1}$
Combined 95% CL	m = 125.09 GeV	95% CL	m = 125.09 GoV
<i>Η</i> →γγ 68% CL	$m_{H} = 125.09 \text{ GeV}$		$m_{H} = 125.09 \text{ GeV}$
1 5 $H \rightarrow ZZ^* \rightarrow 4/68\%$ CL	· · · · · · · · · · · · · · · · · · ·		1

Introduction

- The combination of measurements of Higgs boson production in the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ decay channels are presented
- Using proton–proton collision data corresponding to an integrated luminosity of 36.1 fb⁻¹ produced by the LHC at $\sqrt{s} = 13$ TeV • All measurements are performed assuming a Higgs boson mass of $125.09 \pm 0.21(stat.) \pm 0.11(syst.)$ GeV

Individual channel measurements

- $H \rightarrow \gamma \gamma$
- The signal is extracted using an unbinned likelihood fit to the diphoton invariant mass distribution
- $H \to ZZ^* \to 4l$
- Reconstructs the intermediate Z bosons using their decays to electrons and muons
- Requires the four-lepton invariant mass to be between 118 and 129 GeV
- In the categories where a BDT is employed, the signal is extracted through a binned fit to the BDT discriminant
- In other categories the signal estimation is based on event counting

Combined mass measurement

- A measurement of the mass of the Higgs boson is improved with respect to the previous one obtained with ATLAS Run 1 data
- Derived from a combined fit to the invariant mass spectra of the decay channels

• This result is in excellent agreement with and has similar uncertainty to the LHC Run 1 average

Total cross section

- Based on the inclusive signal yield in each decay channel independent of production mode
- Each channel yield is measured by

$gg \to H \ (0\text{-jet})$	29.7	$^{+7.3}_{-6.4}$	$\binom{+6.6}{-6.0}$	$^{+3.1}_{-2.4}$) pb	$27.6\pm1.9~\rm{pb}$
$gg \to H \ (1\text{-jet}, p_T^H < 60 \ GeV)$	4.4	$^{+4.8}_{-4.5}$	$\binom{+4.4}{-4.1}$	$^{+1.7}_{-1.8}$ pb	$6.6\pm0.9~\rm{pb}$
$gg \to H \ (1\text{-jet}, 60 \le p_T^H < 120 \ GeV)$	4.6	$^{+2.8}_{-2.4}$	$\binom{+2.7}{-2.4}$	$^{+0.7}_{-0.5}$ pb	$4.6\pm0.7~\rm{pb}$
$gg \rightarrow H \ (1\text{-jet}, 120 \leq p_T^H < 200 \ GeV)$	1.6	$^{+1.1}_{-0.9}$	$\binom{+1.0}{-0.9}$	$^{+0.3}_{-0.2}$) pb	$0.75\pm0.15~\rm{pb}$
$gg \to H~(\geq 2\text{-jet}, p_T^H < 200~GeV~\text{or VBF-like})$	10.6	$^{+4.7}_{-4.2}$	$\binom{+4.3}{-3.9}$	$^{+1.9}_{-1.4}$ pb	$4.8\pm1.0~\rm{pb}$
$gg \rightarrow H \ (\geq 1\text{-jet}, p_T^H \geq 200 \ GeV)$ + $qq \rightarrow Hqq \ (p_T^j \geq 200 \ GeV)$	1.9	$^{+0.9}_{-0.7}$	$\binom{+0.8}{-0.7}$	$^{+0.3}_{-0.2}$) pb	$0.81\pm0.16~\rm{pb}$
$qq \to Hqq \ (p_T^j < 200 \ GeV)$	9.8	$^{+4.3}_{-3.5}$	$\binom{+4.0}{-3.2}$	$^{+1.5}_{-1.4}$) pb	$4.58^{+0.15}_{-0.18} \text{ pb}$
$gg/qq ightarrow H\ell\ell/H\ell u$	0.2	$^{+0.9}_{-0.7}$	$\binom{+0.8}{-0.7}$	± 0.2) pb	$0.63^{+0.03}_{-0.06} \text{ pb}$
q ar q / g g o t ar t H	0.3	$^{+0.5}_{-0.4}$	$\binom{+0.5}{-0.4}$	± 0.1) pb	$0.59^{+0.04}_{-0.05} { m ~pb}$

Ratios of cross sections and branching fractions

- $\sigma_i \cdot B_f = \sigma_{ggF} \cdot B_{4l} \cdot \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \cdot \left(\frac{B_f}{B_{4l}}\right)$ • The measurements of $\sigma_{ggF} \cdot B_{4l}$, $\frac{\sigma_{VBF}}{\sigma_{aaF}}$,
 - $\frac{\sigma_{VH}}{\sigma_{ggF}}$, $\frac{\sigma_{t\bar{t}H}}{\sigma_{ggF}}$ and $\frac{B_{\gamma\gamma}}{B_{4l}}$
- Common systematic uncertainties cancel, reducing model dependence and improving precision

$\sigma_{aaF} \cdot B_{4/}$	ATLAS Preliminary
55	$\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$
R/R	$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$
Ογγ/Ο4/	<i>m_H</i> = 125.09 GeV, ly _H l<2.5
,	
$\sigma_{VBF}/\sigma_{ggF}$	
	Measurement I

- A combined fit is performed for the cross sections of ggF, VBF, VH, $t\bar{t}H$ for $|y_H| < 2.5$ and assuming SM branching fractions
- ggF and $t\bar{t}H$ productions include the *bbH* and *tHX* processes

Process	Result	Uncertainty [pb]			SM prediction	
$(y_H < 2.5)$	[pb]	Total	Stat.	Exp.	Th.	[pb]
ggF	43.9	$^{+6.2}_{-6.0}$	$\binom{+5.5}{-5.4}$	$^{+2.7}_{-2.3}$	± 1.2	$44.5^{+2.0}_{-3.0}$
VBF	7.9	$^{+2.1}_{-1.8}$	$\binom{+1.7}{-1.6}$	$^{+0.8}_{-0.6}$	$+1.0 \\ -0.7$	$3.52^{+0.08}_{-0.07}$
VH	0.3	$^{+1.6}_{-1.4}$	$\binom{+1.5}{-1.3}$	± 0.4	(+0.3)	$1.99\substack{+0.06\\-0.05}$
$t\bar{t}H$	0.27	$+0.37 \\ -0.32$	$\left(\begin{array}{c} +0.36 \\ -0.31 \end{array} \right)$	$^{+0.06}_{-0.05}$	(+0.05)	$0.59\substack{+0.03 \\ -0.05}$

• The likelihood contours in the σ_{VBF} versus $\sigma_{q,qF}$ plane from $H \rightarrow \gamma \gamma$ and

- The cross section of $pp \rightarrow H + X$ at $\sqrt{s} = 13$ TeV is measured to be $57.0^{+6.0}_{-5.9}(stat.)^{+4.0}_{-3.3}(syst.)$ pb, consistent with the SM prediction of $55.6^{+2.4}_{-3.4}$ pb
- The global signal strength is determined with the result $\mu = 1.09 \pm$ 0.12
- The Higgs boson production cross sections are measured in a combined fit
- A combined fit is performed for σ_{qqF} · B_{4l} , each production cross section relative to σ_{ggF} , and the ratio of branching fractions $B_{\gamma\gamma}/B_{4l}$
- The processes are divided into STXS regions and a combined measurement is performed
- The observed Higgs boson yields are used to obtain confidence intervals for κ modifiers
- No significant deviation from the Standard Model predictions is observed

References

• The ATLAS Collaboration. "Measurement of the Higgs boson mass in the $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ channels with $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector" <u>ATLAS-</u> CONF-2017-046 • The ATLAS Collaboration. "Combined measurements of Higgs boson production and decay in the $H \rightarrow ZZ^* \rightarrow$ 4*l* and $H \rightarrow \gamma \gamma$ channels using $\sqrt{s} = 13$ TeV proton–proton collision data collected with the ATLAS experiment" ATLAS-CONF-2017-047

 $H \rightarrow ZZ^* \rightarrow 4l$, and their combination [qd] 40 **ATLAS** Preliminary Combined 68% CL b^{HR} 35 \sqrt{s} = 13 TeV, 36.1 fb⁻¹ ······ Combined 95% CL $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ $H \rightarrow \gamma \gamma 68\%$ CL = ····· $H \rightarrow ZZ^* \rightarrow 4I$ 68% CL m_H = 125.09 GeV, ly_Ll<2.5 Best fit 25 SM prediction 20 15 10 10 20 70 σ_{ggF} [pb]

Kunlin Ran on behalf of the ATLAS Collaboration Institute of High Energy Physics, Chinese Academy of Sciences

