COMET, An experiment to search for mu-e conversion in a nuclear field

Hiroaki Natori (IBS/CAPP) on behalf of COMET collaboration

COMET Collaboration

2017/Sep./1-5 PANIC2017 The 21st Particles & Nuclei International Conference @ IHEP

5 countries, 33 institutes

176 collaborators

Physics Motivation

Muonic atom and µ-e conversion

OMET

- μ^- + (A,Z) $\rightarrow e^-$ + (A, Z)
- Charged Lepton flavor violating (CLFV) process. Not yet discovered
- Standard Model: Br=0
 SM+v-oscillation: Br<10⁻⁵⁴
- Several BSM predicts Br~10⁻¹⁵
 - Clear Evidence of NP

Muon capture $\mu^- + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$ Larger Br for larger Z Shorten lifetime of muonic atom

μ -e conversion and μ -e γ

OMET

COMET Overview

Experiment Strategy

 SINDRUM II Br(μ-e conv. Au) < 7×10⁻¹³

OMET

- DC beam, heavy nuclei
- O(1) probably beam B.G.

- Pulsed beam, delayed signal window, light but not too light nucleus (COMET selects Al)
 - Heavier nucleus, larger overlap with muon wave function, but shorter lifetime (τ_(Au)~0.07μs, τ_(Al)~0.9μs)
- Need more intense beam

- High statistics: > 10¹⁸ muons stopped on target
 - High power 8 GeV, 1.2 µs repetition proton beam at J-PARC
 3.2 (56) kW for Phase-I (Phase-II)
- Good extinction factor : (off-timing proton)/(proton in bunch) << 10⁻⁹ (our requirement)

COMET (Phase-II) OMET

Pulsed proton

(52kW)

Pion capture

low P selection

solenoid

Target disks

- O(10⁻¹⁷) sensitivity 4 orders improvement from current limit
- Straw-tubes in vacuum
- **Electro-magnetic Calorimeter**

We will put one more step to this goal (Phase-I, II scheme)

2017/Sep./1-5 PANIC2017 The 21st Particles & Nuclei International Conference @ IHEP

High P electron

selection

Phase-I with 2 kinds of detectors

For beam profile, beam related B.G. measurement Validation of Phase-II detector

· Cic

w chambe

Pulsed proton (3.2kW) **Backward extraction** for low P pion Charge+Momentum selection

Background estimation (Phase-I)

OMET

Type	Background	Estimated events		
Physics	Muon decay in orbit	0.01		
	Radiative muon capture	0.0019		
	Neutron emission after muon capture	< 0.001		
	Charged particle emission after muon capture	< 0.001		
Prompt Beam	* Beam electrons			
	* Muon decay in flight			
	* Pion decay in flight			
	* Other beam particles			
	All (*) Combined	≤ 0.0038		
	Radiative pion capture	0.0028		
	Neutrons	$\sim 10^{-9}$		
Delayed Beam	Beam electrons	~ 0		
	Muon decay in flight	~ 0		
	Pion decay in flight	~ 0		
	Radiative pion capture	~ 0		
	Anti-proton induced backgrounds	0.0012		
Others	Cosmic rays [†]	< 0.01		
Total		0.032		
t This estimate is currently limited by computing resources				

This estimate is currently limited by computing resources.

Phase-I Sensitivity

S.E.S =
$$\frac{1}{N_{\mu} \times f_{cap} \times f_{gnd} \times A_{\mu e}} = 3 \times 10^{-15}$$

 $(< 7 \times 10^{-15}, 90\%$ C.L. with 0.032 B.G.)

 $N_{\mu} = 1.5 \times 10^{16}$: # of muon stop on target disks muon yield : 4.7 ×10⁻⁴ muons / one proton hit on target 3.2kW and 1.26 × 10⁷ sec operation (~146 days)

 $f_{cap} = 0.61$: Fraction (muon capture) / (muon stop on target) $f_{gnd} = 0.9$: Fraction of nucleus is not excited by μ -e conv.

 $A_{\mu e} = 0.041$: Total acceptance for μ -e electron

Event selection	Value	Comments
Online event selection efficiency	0.9	Section 16.1.3
DAQ efficiency	0.9	
Track finding efficiency		Section 13.5.1
Geometrical acceptance + Track quality cuts	0.18	
Momentum window ($\varepsilon_{\rm mom}$)	0.93	$103.6 \text{ MeV}/c < P_e < 106.0 \text{ MeV}/c$
Timing window ($\varepsilon_{\text{time}}$)	0.3	700 ns < t < 1170 ns
Total	0.041	

Preparation Status

COMET Beam mode

- COMET beam mode operation is already tested
- Extinction: (off-timing proton)/(proton in bunch)
 - Requirement: 10⁻⁹ for 10⁻¹⁷ sensitivity
 - Measured 1 × 10⁻¹² @ FX with 8 GeV COMET operation.
 To be measured with slow extraction.

Facility, beamline elements

Cylindrical drift chamber

- Final detector constructed (June 2016)
 - Position resolution < 200um (cosmic-ray measurement w/o B)
 - Momentum resolution 195keV/c by simulation

OMET

- 20 layer stereo wires
 ~15,000 field wires, ~5,000 sense wires
- radius: 496 to 840mm (Accept >60MeV/c)
- He based gas mixture

Trigger hodoscope

- Acrylic bar (Cherenkov light) identify particle
- Plastic scintillator measures timing and position
- Readout by fine-mesh PMT for operation in magnetic field
- 4 (2×Acrylic & 2×Scintillator) coincidence for trigger
- S/N > 100, $\sigma_{time} < 0.8ns$ measured

- AI (70nm) laminated Mylar (20µm) tubes with 9.75mmφ (15µm thickness, 5mmφ for Phase-II)
- Ar/Ethane or Ar/CO2
- Position resolution < 200µm measured with prototype (corresponds to σ_P < 200keV)
- Operation in vacuum (<0.1 Pa) achieved with prototype
- Mass production of Phase-I straws completed

- < 5% Energy resolution is needed for affordable trigger rate
- > 90% Particle identification (e⁻/μ⁻/π⁻) with data + MC evaluation
- 2 × 2 × 12 cm³ LYSO crystals with 10 ×10 mm² APD
- Prototype shows
 - Energy resolution: 4.2%
 - Position resolution: 7.7mm
 - Timing resolution: 0.4ns
- ~2000 crystals (covers 1mφ) will be prepared for Phase-I

Summary and schedule

- COMET aims to search for µ-e conversion with sensitivity of O(10⁻¹⁷) (Phase-II)
- COMET at first concentrate on Phase-I to
 - Search for μ -e conv. with sensitivity of O(10⁻¹⁵)
 - Perform a direct measurement of the beam profile and backgrounds
- R&D and construction are progressing

End of slide

Muon stopping target material

- Heavier Z, smaller signal energy (larger binding energy)
- Using AI, better to avoid Z=1 to 12, He is OK to be used around target
- Heavier Z, shorter lifetime due to larger fraction of muon capture

	Al	Ti
lifetime	864 ns	330 ns
time window	0.3	0.2
signal	1	1.5
net	0.3	0.3

Target material vs physics

OMET

Diamond detector development for extinction measurement

