

THE COMPRESSED BARYONIC MATTER EXPERIMENT AT FAIR

Joachim Stroth Goethe University Frankfurt am Main / GSI PANIC 2017, Beijing, September 2017

The QCD challenge

- From particles (quarks) to hadrons to nuclei and to matter (NS merger as site for r-process) \bigcirc
- Governed by non-perturbative QCD, ab-initio approach complicated \bigcirc
- Experimental approach to QCD matter: heavy-ion collisions, gravitational waves \bigcirc

A. Bauswein et al. [1302.6530]

September 1-5, 2017

Joachim Stroth, Goethe University / GSI, PANIC 2017

The QCD phase diagram

Courtesy of K. Fukushima & T. Hatsuda

Open questions:

- Origin of mass?
- Nature of confinement?
- Role of condensates?
- EOS of dense/hot matter

The FAIR Facility

FAIR Groundbreaking Ceremony June 2017

2021 finish concrete pouring – 2023 start installation CBM/HADES –2025 full operation.

September 1–5, 2017

QCD physics at FAIR

- Hadron- and Quark Matter Physics (CBM/HADES)
- Hadron Spectroscopy and Structure (PANDA)
- Properties and Reactions of Rare Isotope (NUSTAR)

MOTIVATION

CBM - "nomen est omen" - Cloudy Bag Model ;)

A lot already known about nucleons and their excitations from (lattice) QCD:

- Confinement of light quarks nothing to do with flux tubes. Rather appears because the condensates are suppressed between the valence quarks.
- Resonance properties substantially driven by cloudmeson core final state interaction.
 - L. Karatidis et al., arXiv:1608.03051 J. M. M. Hall et al., arXiv:1411.3402

Chiral symmetry restoration

- \circ in-medium a_1/ρ spectral functions. Trend seen like conjectured by Rapp/Hohler.
 - H. Meyer et al. arXiv: 1212.4200 & INPC2016
- Likely no generation of mass without confinement.

What does it take, to force the quarks forming a giant bubble?

Chiral Perturbation Theory:

- Provides prediction for chiral order parameter a.f.o. baryon
- Sees strong repulsion (at low to moderate temperatures.

J.W. Holt, M. Rho, W. Weise arXiv1411.6681

Exploration of the High- μ_B Region

Reach:

Temperature and chemical potential extracted from particle multiplicities and assuming thermalization

Speed:

Mean event rates before event selection. Note the luminosity drop for colliders at low beam energy.

Heavy-ion collisions at SIS100 energies

- Nearly complete stopping leads to baryonrich matter in the overlap zone.
- Generally shorter lifetime and larger densities as beam energy goes from 1 to 10 A GeV.

I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007)

Physics addressed by CBM

The QCD Equation-of-State

- Collective behavior (flow) \bigcirc
- Multi-strange baryons \bigcirc

Search for novel phases and 1st order phase transition

- e-b-e observables (higher-moments) \bigcirc
- Excitation function of hadron multiplicities and virtual 0 photons

Path to restoration of chiral symmetry

High-precision invariant mass distributions low- and \bigcirc intermediate mass range

Strange matter

- (Double-) lambda hypernuclei \bigcirc
- Meta-stable objects (e.g. strange dibaryons) \bigcirc

Charm production (and propagation) at threshold

- Open-charm in pp, pA \bigcirc
- Backward production in pA (R_{pA}) \bigcirc

 Λ/π

×

THE DETECTOR SYSTEM

The CBM cave

The CBM strategy

- 10⁵ 10⁷ Au+Au reactions/sec
- $\circ \quad \begin{array}{l} \text{determination of displaced} \\ \text{vertices } (\sigma \approx 50 \ \mu\text{m}) \end{array}$
- identification of leptons and hadrons
- fast and radiation hard detectors and FEE
- free-streaming readout electronics
- high speed data acquisition and online event selection
- 4-D event reconstruction

CBM Technical Developments

SC Magnet: JINR Dubna

MRPC ToF Wall: Beijing, Bucharest, Darmstadt, Frankfurt, Hefei, Heidelberg, Moscow, Rossendorf, Wuhan, Zagreb

Transition Radiation Detector: Bucharest, Frankfurt, Heidelberg, Münster

Micro-Vertex Detector: Frankfurt, Strasbourg

RICH Detector: Darmstadt, Giessen, St. Petersburg, Wuppertal

Forward calorimeter: Moscow, Prague, Rez

Silicon Tracking System: Darmstadt, Dubna, Krakow, Kiev, Kharkov, Moscow, St. Petersburg, Tübingen

Muon detector: Kolkata + 13 Indian Inst., Gatchina, Dubna

DAQ and online event selection: Darmstadt, Frankfurt, Kharagpur, Warsaw

CBM FAIR Phase 0 experiments

- 1. Install, commission and use 430 out of 1100
 - CBM RICH multi-anode photo-multipliers (MAPMT) in HADES RICH photon detector
- 2. Install, commission and use
 - > 10% of the CBM TOF modules including read-out chain at STAR/RHIC (BES II 2019/2020)

mCBM

 $_{\circ}$ Pre-series detector modules will be arranged to track charged particles v

- $_{\odot}$ Test full read-out chain with free streaming front-ends
- $_{\odot}$ Operate starting from 2019 on at SIS18
- $_{\odot}$ On-line select Lambda decays by track topology only

- Reconstruction performance based on 10⁸ simulated UrQMD collisions of Ni-Ni at 1,93 AGeV
- Technical goal: reach respective statistics in less than a minute data taking

PERFORMANCE EXAMPLES

CBM readout and online systems

Novel readout system

- no hardware trigger on events, free streaming triggerless data
- o detector hits with time stamps,
- full online 4-D track and event reconstruction
- analysis of 10 MHz event rate implemented, only very moderate losses in efficiency

September 1-5, 2017

Strange particle production: $\Sigma^+ \& \Sigma^-$

NEW: Identification of Σ^+ and Σ^- via their decay topology

$\Sigma^+ \rightarrow p \pi^0$	$\overline{\Sigma}^+ \longrightarrow \overline{p} \pi^0$	BR = 51.6%
$\Sigma^+ \rightarrow n\pi^+$	$\overline{\Sigma}^+ \longrightarrow \overline{n} \pi^-$	BR = 48.3%
$\Sigma^{-} \rightarrow n\pi^{-}$	$\overline{\Sigma} \rightarrow \overline{n}\pi^{-}$	BR = 99.8%

Method:

- Find all primary and secondary tracks, use TOF PID for secondary track
- Search whether two would fit together with a kink
- From momentum conservation get momentum of neutral particle
- o Assume e.g. Σ^- decay, calculate (missing) mass of neutral particle
- \circ Select neutron candidates, recalculate Σ mass

Reconstruct a neutral daughter from the mother and the charged daughter

Reconstruct Σ mass spectrum from the charged and obtained neutral daughters

Di-electron measurements with CBM

Au-Au collisions at 8 A GeV, full Monte-Carlo.

Input cocktail

Reconstructed in acceptance

Croatia: Split Univ. China: CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Czech Republic: CAS, Rez Techn. Univ.Prague France: IPHC Strasbourg Hungary: KFKI Budapest Budapest Univ.

Germany: Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS **GSI** Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf **KIT Karlsruhe** Münster Univ. Tübingen Univ. Wuppertal Univ. **ZIB Berlin**

India:UAligarh Muslim Univ.
Bose Inst. Kolkataiv. IKFPanjab Univ.
iv. FIASiv. IKSRajasthan Univ.
iv. ICSiv. ICSUniv. of Jammu
Univ. of Kashmir
tdtUniv. of Kashmir
S.
Univ. of CalcuttaIniv. P.I.B.H. Univ. Varanasi
Iniv. ZITIPossendorfIOP Bhubaneswar
IIT Kharagpur
Aiv.Gauhati Univ.

<u>Korea:</u> Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest Russia:

IHEP ProtvinoTINR TroitzkkITEP MoscowKurchatov Inst., MoscowLHEP, JINR DubnaLIT, JINR DubnaMEPHI MoscowObninsk Univ.PNPI GatchinaSINP MSU, MoscowSt. Petersburg P. Univ.Ioffe Phys.-Tech. Inst. St. Pb.

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

60 institutions, 530 members

Summary

CBM scientific program at SIS100:

• Exploration of the QCD phase diagram in the region of neutron star core densities \rightarrow large discovery potential.

First measurements with CBM:

 O High-precision multi-differential measurements of hadrons incl. multistrange hyperons, hypernuclei and dileptons for different beam energies and collision systems
→ terra incognita.

Status of experiment preparation:

- Prototype detector performances fulfill CBM requirements.
- 7 TDRs approved, 4 TDRs in preparation.

FAIR Phase 0:

- HADES with CBM RICH photon detector, use CBM detectors at STAR/BNL, BM@N/JINR, NA61/SPS.
- mCBM@SIS18 including DAQ and FLES for full system test