Study on the transverse polarization of $\Lambda(\overline{\Lambda})$ and dihadron cross sections at Belle

Yinghui GUAN Indiana University & KEK

On behalf of the Belle Collaboration

Sept.1 - 5, PANIC2017, Beijing

Fragmentation Functions

- Fragmentation functions(FF) allow us to understand the transition of asymptotically free partons into several confined hadrons.
 - Cannot be calculated form first principles and need to be extracted experimentally.
- The polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$,
 - describes an unpolarized quark fragmenting into a transversely polarized hadron.
 - plays an important role in the "spontaneous" Λ transverse polarization, which was observed in unpolarized pp collision. PRL36, 1113 (1976); PRL41, 607 (1978)
 - counterpart of the Sivers parton distribution function. chiral-even.
 - can shed light on the spin structure of the Λ , especially about the quark orbital angular momentum, a missing part of the spin puzzle of the nucleon. **PRL105,202001 (2010)**
- Unpolarized Di-hadron FF
 - Describes a unpolarized parton fragmenting into two hadrons inclusively
 - Unpolarized baseline for the measurements related to the spin-dependent di-hadron fragmentation functions (Interference FF).
- Large data set at Belle would allow a precise measurement of FFs.

KEKB and Belle Detector

Belle Detector

KEKB@Tsukuba, Japan

Nucl. Instrum. Meth. A479,117(2002)

- Easiest process to access FFs (e+e- collider, clean environment).
- Large integrated luminosity!
- Close energy to SIDIS (100 GeV² vs 2-3 GeV²)

Data set

- Thrust>0.8 to select back-to-back event topology and suppress *B* decays to less than 1%.
- Signal process $\Lambda \to p\pi^-(\overline{\Lambda} \to \overline{p} \pi^+)$. Clear Λ peak.
- By considering light hadron (K[±], π[±]) in the opposite hemisphere, we can emphasize or suppress one kind of flavor which contributes to Λ(Λ).

PRL105,202001 (2010)

Reference frames

arXiv:1611.06648 BELLE-CONF-1611

- The reference vector \hat{n} is normal to the Λ production plane.
- Give a polarization of *P*, the yield of the events follow:

$$\frac{1}{N}\frac{dN}{d\cos\theta} = 1 + \alpha P \cos\theta.$$

- the α is the decay parameter: $\alpha_+=0.642 \pm 0.013$ for Λ and $\alpha_-=-0.71 \pm 0.08$ for $\overline{\Lambda}$ (PDG).
- Fractional energy $z_{\Lambda} = 2E_{\Lambda}/\sqrt{s}$. The p_t is the transverse momentum of Λ relative to thrust axis in thrust frame and to hadron axis in hadron frame.

kinematic variables

$\Lambda + X$	thrust frame	
variables	z_Λ , p_t	
$\Lambda + h + X$	thrust frame	hadron frame
variables	z_Λ, z_h, p_t	z_{Λ}, z_h, p_t

Analysis flow

- Cosθ distribution in Λ signal region a) is corrected by sideband subtraction → b)
- Normalized by itself, as shown in c).
- The shape c) is divided by the corresponding shape from MC, so that we obtain the efficiency-corrected curve d).
- Or c) shape of Λ events is divided by that from anti-Λ events if we assume efficiency is independent on charge, that is e), this is called data ratios.
- We fit **d**) and **e**) to get the polarization of interest.

Extract polarization

- Fit to the $\cos\theta$ distributions with the simple function $1 + p_0 \cos\theta$.
- The polarization of interest: p_0/α .
- In the data ratio, polarization is obtained via $p_0/(\alpha_+ \alpha_-)$.
- In data ratios, the slope on the cosθ distributions are about two times larger than that in MC-corrected ratios, the (α₊ α₋) is also about two times larger than α₊(α₋).
- Results from MC-corrected ratio and data ratio are consistent with each other.
- Nonzero polarization was seen, the magnitude rises from zero to about ~5% with growing fraction energy $z_{\Lambda} = 2E_{\Lambda}/\sqrt{s}$.

MC validation & Smearing correction

- Zero polarization is observed in MC, as expected.
- Smearing effects caused by the detector acceptance and resolution are estimated using the weighted-MC with nonzero polarization input.
- In thrust frame, the polarization is found underestimated in reconstruction, correction factors ranges 1.0-1.3 depends on the [z,p_t].
- In hadron frame, the polarization observed in reconstruction is consistent with input. No need for correction.

arXiv:1611.06648

Results in thrust frame vs. (z,pt)

- Four z bins and five p_t bins are applied: z_Λ=[0.2,0.3,0.4,0.5,0.9]; p_t=[0.0,0.3,0.5,0.8,1.0,1.6] GeV
- Nonzero polarization was observed. Interesting shape as a function of (z_{Λ}, p_{t}) .
- The polarization rise with higher p_t in the lowest z_{Λ} and highest z_{Λ} bin. But decreases and reverses around 1 GeV in the intermediate z_{Λ} bins.
- Results are consistent between Λ and $(\overline{\Lambda})$ and Λ - $(\overline{\Lambda})$ data ratio.
- Error bars are statistical uncertainties and shaded areas show the systematic uncertainties.

Results in thrust frame vs. (z_{Λ}, z_{h})

In Λ + h⁺, polarization keeps negative, the magnitude increases with higher z_h.
In Λ + h⁻, at low z_Λ, polarization is positive, at high z_Λ, polarization is negative.

Results in hadron frame vs. (z_{Λ}, z_{h})

Similar results with that in the thrust frame.

Results from charge-conjugate modes are consistent with each other.

Quark flavor tag by the light hadron

- An attempt to look at the flavor tag effect of the light hadron, based on MC. (Pythia6.2)
- The fractions of various quark flavors going to the Λ's hemisphere are shown in different [z_Λ z_h] region.
- MC indicates that the tag of the quark flavors is more effective at low z_{Λ} and high z_h . It explains why at low z_{Λ} and high z_h , polarization in $\Lambda + h^+$ and $\Lambda + h^-$ have opposite sign.

Background unfolding

- Non-Λ backgrounds are excluded out in the sideband subtraction.
- Σ^* decays to Λ strongly, is included in the signal.
- Feed-down from $\Sigma^0(22.5\%)$, $\Lambda_c(20\%)$ decays need to be understood.
- The Σ^0 -enhanced ($\Sigma^0 \rightarrow \Lambda + \gamma$) (Br~100%). and Λ_c -enhanced($\Lambda_c \rightarrow \Lambda + \pi^+$)(Br~1.07%) data sets are selected and studied.
- The measured polarization can be expressed as:

$$P^{mea.} = (1 - \sum_{i} F_{i})P^{true} + \sum_{i} F_{i}P_{i},$$

- *F_i* is the fraction of feed-down component i, estimated from MC. *P_i* is polarization of component i.
- Polarization of Λ from Σ^0 decays is found has opposite sign with that of inclusive Λ . Phys. Rev. 109, 610 (1958); Phys.Lett.B303,350(1993)

Di-hadrons FF

 $z = 2E_{h_1h_2}/\sqrt{s}$

Phy. Rev. D 92 092007 (2015) arXiv:1706.08348, accepted by Phy. Rev. D

- Belle data sample 655 fb⁻¹ (Υ (4S) peak) + 89 fb⁻¹~60 MeV below (continuum) for comparison.
- Charged light hadron (π[±], K[±]) pair, they are required to be in same hemisphere as defined by the thrust event-shape variable and its axis.
- Cross sections as a function of the total fractional energy *z* and invariant mass *m*_{h1h2}
- Various corrections: PID, momentum smearing, background, acceptance correction, and ISR correction
- Results with weak-decays-rmoved are also studied.

 $\pi^+\pi^-$, $\pi^+\pi^+$ cross section

arXiv 1702.08348, accepted by Phy. Rev. D

• Resonances seen are K_S^0, ρ^0 , $f_0(980)$ and Cabibbosuppressed D^0 decays. Below ρ^0 there are partially reconstructed ω, η

- Enhancements at ~1.35 GeV and 1.6 GeV can be identified as multi-body or indirect decay products of *D* mesons.
- Same-sign pion pairs generally display a continuous distribution with a slight enhancement at ~1.35GeV, caused by decay products of *D* mesons.

error boxes represent the systematic uncertainties

$\pi^+\pi^-$ MC decomposition

- A substantial fraction of pion pairs have no common ancestor: they originate directly from the fragmentation chain.
- See clearly several of direct two- or three-body decays such as K_S^0 , ρ^0 , D^0 , η etc., and pions from different steps in D mesons.
- Cross sections after weak decays removal are also shown in the paper: arXiv 1702.08348.

 $\pi^+ K^-$, $\pi^+ K^+$ cross section

- The corresponding K* resonance and the Cabibbofavored D⁰ meson decay are very clearly visible.
- The enhancement at 1.6GeV is predominantly caused by *D* meson decays.
- The same-sign pion-kaon pairs again show a predominately smooth distribution from direct fragmentation.

 K^+K^- , K^+K^+ cross section

- The ϕ and the Cabibbosuppressed D^0 meson decay are clearly visible.
- Some enhancements around the D⁰ mass can be assigned to D mesons decays
- Same-sign kaon pair cross section is mostly a smooth function of the invariant mass and is increasingly suppressed with z.
- Small enhancement close to mass threshold is related to D⁰ decays into a kaon and another hadron, which can further decays into more kaons.

Summary

- The study on the transverse polarization of $\Lambda(\overline{\Lambda})$ in the inclusive process $e^+ e^- \rightarrow \Lambda(\overline{\Lambda}) + X$ and $e^+ e^- \rightarrow \Lambda(\overline{\Lambda}) + K^{\pm}(\pi^{\pm}) + X$ is performed at Belle. arXiv:1611.06648 BELLE-CONF-1611
 - Nonzero transverse polarizations of $\Lambda(\overline{\Lambda})$ is observed for the first time at e^+e^- annihilation. Its magnitude as a function of z_{Λ} and p_t was presented.
 - >By selecting identified light hadrons (K^{\pm} , π^{\pm}) in the opposite hemisphere we also obtain sensitivity to the flavor dependence.
- Di-hadron ($e^+ e^- \rightarrow h_1 h_2 + X$) mass dependent cross sections were measured at Belle arXiv:1706.08348, accepted by Phy. Rev. D
 - provides the very important input for the measurements related to the spin-dependent di-hadron fragmentation functions.

What are fragmentation functions?

Credit: Ralf. Seidl

How do quasi-free partons fragment into confined hadrons ?

- Does spin play a role ? Flavor dependence?
- What about transverse momentum (and its Evolution)?

What experiments measure:

- Normalized hadron momentum in CMS: $e^+e^- \rightarrow h(z) X$; $z = 2E_h / \sqrt{s}$
- Hadron pairs' azimuthal distributions: e⁺e⁻→h₁ h₂ X; <cos(φ₁+φ₂)>; Collins FF、Interference(IFF)

• Cross sections or multiplicities differential in z: ep->hX, pp->hX

Additional benefits of the FF measurements :

- Pol FFs necessary input to transverse spin SIDIS und pp measurements to extract Transversity distributions function
- Flavor separation of all Parton distribution functions (PDFs) via FFs (including unpolarized PDFs)
- Baseline for any Heavy Ion measurement
- Access to exotics?

Systematics

• Change the reference vector \hat{n} to be in the Λ production plane. But still normal to \vec{p}_{Λ} .

 Combine a proton in one event and pion in the other event to form a false Λ.

- The second order term was added in the fit function $1 + p_0 cos\theta + p_1 cos^2\theta$
- Besides, uncertainties from smearing correction factors and sideband subtractions are included in systematics errors.
- Uncertainties of decay parameters are assigned as systematic errors.

Quark flavor tag by the Kaon

$\pi^+\pi^-$, $\pi^+\pi^+$ weak-decay-removed

arXiv 1702.08348, accepted by Phy. Rev. D

24

π^+K^- , π^+K^+ weak-decay-removed

arXiv 1702.08348, accepted by Phy. Rev. D

K^+K^- , K^+K^+ weak-decay-removed

arXiv 1702.08348, accepted by Phy. Rev. D

