Large scale beam-tests of silicon and scintillator-SiPM modules for the CMS High Granularity Calorimeter for HL-LHC

Shilpi Jain on behalf of the CMS collaboration

PANIC conference, 1st September - 5th September, 2017

Why High Granularity Calorimeter (HGCAL) in HL-LHC

- * Important role of the forward calorimeter for physics at the HL-HLC
- * Current CMS calorimeters will suffer radiation damage by the end of LHC running
- * Detector upgrade important to maintain excellent performance in the harsh HL-LHC

Why beam tests?

- Proof of concept of the baseline design
- Study the calorimetric performance:
 - Pedestal and noise stability
 - Calibration with MIPs
 - Response to electrons and hadrons
 - * Comparison of test beam results with the simulation
- We had successful series of beam tests both at CERN and Fermilab in 2016 and 2017
 - Tested several configurations
 - * good agreement between data and simulation

What has been tested - Hexagonal Si sensor

"p on n" with 200 µm (300 µm) in 2016 (2017) active thickness, made from 6" wafer, cell size

- 128 hexagonal cells
- 2 calibration pads

Module Assembly

* 1 FPGA for reading and controlling the ASICs (in 2017)

Overview of tests done in 2016

FNAL

CERN

FNAL * 16 Si modules, 15 X_0

- * e beam (4-32 GeV)
- * p beam (120 GeV) for calibration
- CERN * 8 Si modules, Two setup: 5-27 X₀ and 6-15 X₀
 - * e beam (20-250 GeV)
 - * π beam (125 GeV), μ (120 GeV) for calibration

ASIC: SKIROC2

Tested configuration: prototype for CE-E

MIP Calibration in 2016 TB

- * FNAL: p beam (120 GeV)
- * CERN: π beam of 125 GeV
- Calibrate only central cells of sensors within trigger area
- Variations due to electronics and cell size

Shower profile and energy resolution in 2016 TB

- Looked at various transverse and longitudinal shower profile and energy resolution
 - * good agreement between data and Simulatio
- Note in preparation, summarizing all 2016 results

Timing resolution in 2016 TB

2017 Test Beam

SKIROC2CMS - used in TB of 2017

- Shapes, amplifies and digitizes signals from Si sensor
 Nice pul
- * 64 channels
- * 13 Switched Capacitor Array (SCA)analog memory —> time samples after every 25 ns
 - * 11 contain useful data
 - * Low Gain, High Gain
- * Nice feature: Time over Threshold (ToT) and Time of Arrival (ToA)
- * ToT: the time a pulse is over a certain threshold is proportional to its amplitude
 - * The time can therefore give a measure of the amplitude, even if the signal saturates
- * ToA: Time when the signal crosses a certain threshold
 - Important for PU mitigation

Nice pulse shape can be seen constructed using the ADC from 11 useful SCAs. We currently use a function which is already being used in CMS ECAL e samples

LG/HG and ToT calibration in a test bench

- * Cover a large dynamic range using 3 "Gains"
 - * HG upto ~40 MIPs used essentially for MIP calibration
 - * LG upto ~180 MIPs
 - * ToT beyond 180 MIPs

Test beam setup in July 2017

- * In 2016, we tested only CE-E
- In 2017, tested a prototype with CE-E, CE-H(Si) and CE-H(Scintillator)
- If all the layers are equipped we would have 112 (28 CE-E + 12 layers with 7 modules in CE-H (Si) + CE-H(Scintillator)) silicon modules and ~ 14000 channels.
- This July, we managed to test 10 modules (2 in CE-E and 8 in CE-H -1 module in 2 layers + 3 modules in 2 layers + CE-H(Scintillator))
 - Main bottleneck was the hexaboard production, setup had to be reduced compared to the initial goal

Geometry in Simulation for 2017 Beam test

CE-E, CE-H(Si), CE-H(scintillator) (CALICE AHCAL prototype)

- * 14 layers of Fe-Pb-Fe absorber
- * 2 layers of Si
 - * First layer after ~6.3 X₀; second layer ~16.8 X₀
- * Total X₀: 22
- * Total λ_0 : 1.3

CuW(1.2mm)
Lead (4.9mm)
Copper(6mm)
Fe (0.3mm/40mm)
Si + PCB(0.3+1.6mm)

ator) From CALICE

SPIROC2B

Plastic scintillator

Central Interface board

* 12 active layers of 36 x 36 cm^2

Katja Krüger | AHCAL prototype overview | 10 Sept 2013 | Page 14/16

- 144 scintillator tiles (each 3 mm thick) of 3 x 3 cm²
- Absorber stack with 74 mm steel plates
- * Total of ~5 λ_0

Total detector: ~54 X_0 and ~9.4 λ_0

16 (no gap between tiles)

30.15

DESY

First look at the July 2017 Test beam data

Pedestal stability

- Pedestal measured using first two time samples
- * Measured as median of the distribution per SCA, per channel
- * Stable within 10 ADC (~0.2 MIP) counts over a week

MIP calibration

- We can see MIP using single muons traversing the silicon
- Reconstruct amplitude using pulse shape fit
- Perform a fit to the Signal with Landau convoluted with Gaussian
- Preliminary MIP ~ 49 ADC
- * FWHM ~ 20 ADC
 - * σ_{Gaus} (noise part) ~ 8.5 ADC
 - * S/N~6

High gain to Low gain calibration

Turning point and the conversion factor from HG to LG (slope of the straight line fit) are stable with energy for all the SKIROC2-CMS chips

Showers for electrons and pions

Hit map in CE-H (Scintillator): Online Monitoring

300 GeV π+

10⁴

10³

10²

10

10⁴

10³

10²

10

10⁴

10³

10²

10

10

 10^{3}

 10^{2}

10

- Online reconstructed data (very preliminary calibration)
- Number of hits in each cell
- Shower well centered

Showers in CE-H(Scintillator): Online monitoring

 Detector performing well

2

Longitudinal profile

8

10

aver

20

10 F

Outlook

- Successfully constructed and operated (using pions and electrons) an HGCAL prototype with CE-E, CE-H(Si) and CE-H(Scintillator) this year
- * SKIROC2CMS being used for the first time in a test beam:
 - * nice pulse shape seen using 11 time samples
- * Preliminary analysis reflects:
 - * Pedestal is stable
 - MIP can be seen
 - Detectors worked fine
- * Test beam happened just last month
 - analyses are ongoing
 - * We will have more results soon
- * We will have more beam time this year (September/October) with more modules.
- * Aim to complete the whole planned system in 2018

Hit map in CE-E and CE-H (Si)

HGCAL Design overview

* High Granularity Calorimeter has a potential to address these challenges

Backing Hadronic (BH):

- Si/Tungsten electromagnetic section followed by two hadronic sections
- Si and scintillator + steel * HGCAL covers $1.5 < \eta < 3.0$ 12 layers, $\sim 5\lambda$ Front Hadronic (FH): 6M Si channels, 0.5 or 1 cm2 cell size Si and scintillator + steel 12 layers, $\sim 3.5\lambda$ * ~22k Si modules Endcap Electromagnetic(EE): Si+Cu & CuW & Pb 28 layers, 25 X0, \sim 1.3 λ BH * Present EE will be replaced by EE HGCAL $\sim 10 \lambda$

Pedestal

ToA

- * ToA important for PU mitigation
- * ToA is not linear for fixed input charge
- Every channel needs to be calibrated separately
 31

Precision timing with single diodes

Precision timing measurement with modules

