Fundamental Symmetries: The Low & High Energy Interface

M.J. Ramsey-Musolf U Mass Amherst

and Cosmic frontiers

http://www.physics.umass.edu/acfi/

Collaborators:, Chien-Yi Chen, Haolin Li, Tao Peng, Peter Winslow

PANIC, Beijing September 2017

Key Theme for This Talk

- Fundamental questions motivate the search for physics beyond the Standard Model
- Tests of fundamental symmetries at low- and highenergies are poised to
 - discover the BSM physics that answers several of these questions
 - determine its character

Outline

- I. The BSM Context
- II. Lepton Number
- III. CP (Flavor Conserving)
- IV. Outlook

I. The BSM Context

Fundamental Questions

MUST answer

SHOULD answer

Fundamental Questions

MUST answer

SHOULD answer

Fundamental Questions

SHOULD answer

Origin of m_{v}

7

Low-Energy / High-Energy Interplay

Low-Energy / High-Energy Interplay

Low-Energy / High-Energy Interplay

II. Lepton Number

Lepton Number: v Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Impact of observation

- Total lepton number not conserved at classical level
- New mass scale in nature, Λ
- Key ingredient for standard baryogenesis via leptogenesis

Ton Scale Experiments: Worldwide Quest

0vββ decay Experiments - Efforts Underway

Technique

mass (0vββ

Status

CUORE

Collaboration

Isotope

EXO200

KamLAND Z

				isotope)	
-	CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
	CARVEL	Ca-48	48CaWO4 crystal scint.	~ ton	R&D
	GERDAI	Ge-76	Ge diodes in LAr	15 kg	Complete
	GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
	MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
	LEGEND	Ge-76	Point contact	~ ton	R&D
	NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
	SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
	SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
	LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
	AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
	LUMINEU (CUPID)	Mo-100	ZnMoO ₄ / Li ₂ MoO ₄ scint. bolometer	1.5 - 5 kg	R&D
	COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
	CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
	CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
	CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
	SNO+	Te-130	0.3% nutTe suspended in Scint	160 kg	Construction
	EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
	nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
ł.	KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
	KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
	NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
	NEXT	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
1	PandaX - 1k	Xe-136	High pressure Xe TPC	~ ton	R&D
	DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

GERDA

MAJORANA

SNO+

J. Wilkerson INT DBD Program June 2017 See J. Shirai Talk 09/01

19

The U.S. Context

NSAC Long Range Plan

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matterantimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

The Chinese Context

See X. Ji Talk 09/05

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Impact of observation

- Total lepton number not conserved at classical level
- New mass scale in nature, Λ
- Key ingredient for standard baryogenesis via leptogenesis

23

LNV Mass Scale & *0vββ*-Decay

LNV Mass Scale & *0vββ*-Decay

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{C}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

"Standard" Mechanism

- Light Majorana mass generated at the conventional see-saw scale: Λ ~ 10¹² – 10¹⁵ GeV
- 3 light Majorana neutrinos mediate decay process

LNV Mass Scale & *0vββ*-Decay

Two parameters: Effective coupling & effective heavy particle mass

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

TeV LNV Mechanism

$$\frac{A_H}{A_L} \sim \frac{M_W^4 \bar{k}^2}{\Lambda^5 m_{\beta\beta}}$$

O(1) for Λ ~ 1 TeV

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{C}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV LNV Mechanism

$$\frac{A_H}{A_L} \sim \frac{M_W^4 \bar{k}^2}{\Lambda^5 m_{\beta\beta}}$$

O(1) for $\Lambda \sim 1 \text{ TeV}$

Implications

TeV LNV & Leptogenesis

35

TeV LNV & Leptogenesis

Baryogenesis alternatives

Energy Scale (GeV)

36

d

 \overline{u}

X

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV Scale LNV

Can it be discovered with combination of $0\nu\beta\beta$ & LHC searches ?

Simplified models

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

 $\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$0v\beta\beta$ -Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

Implications for m_{v} :

Schecter-Valle: non-vanishing Majorana mass at (multi) loop level Simplified model: possible (larger) one loop Majorana mass 44

$0v\beta\beta$ -Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

Implications for m_{v} :

A hypothetical scenario

LNV Mass Scale & *0vββ*-Decay

Back up slides

III. CP (Flavor Conserving)

Fundamental Questions

SHOULD answer

Origin of m_{v}

48

Baryogenesis Scenarios

Era of EWSB: $t_{univ} \sim 10 \text{ ps}$

Electroweak Baryogenesis

- Was Y_B generated in conjunction with electroweak symmetry-breaking?
- To what extent can EDM searches test this scenario?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent New Hf F⁺ : 1.3 x 10⁻²⁸ 1704.07928

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL

** e⁻ equivalent New Hf F⁺ : 1.3 x 10⁻²⁸ 1704.07928

Not shown: muon

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent *New Hf F*⁺ : 1.3 x 10⁻²⁸ 1704.07928

Mass Scale Sensitivity

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent New Hf F⁺ : 1.3 x 10⁻²⁸ 1704.07928

Mass Scale Sensitivity

 $sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$

 $M < 500 \; GeV \rightarrow sin \phi_{CP} < 10^{\text{-}2}$

EDMs & EWBG: MSSM & Beyond

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

CPV for EWBG

Back up slides

The Higgs Portal

What is the CP Nature of the Higgs Boson ?

What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H
ightarrow H_1$, H_2

• New parameters:

$$tan \beta = \langle H_1 \rangle / \langle H_2 \rangle$$

sin α
sin α_b

What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H
ightarrow H_1$, H_2

• New parameters:

$$tan \beta = \langle H_1 \rangle / \langle H_2 \rangle$$

sin α
Sin α_b
CPV : scalar-pseudoscalar
mixing from V(H₁, H₂)

Future Reach: Higgs Portal CPV

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

P	re	Se	en	t
	. –	~		

 $sin \alpha_b$: CPV scalar mixing

Future:
<i>d_n</i> x 0.01
<i>d_A(Hg)</i> x 0.1
d _{ThO} x 0.1
d _A (Ra)

Inoue, R-M, Zhang: 1403.4257

60

CPV & 2HDM: Type II illustration

 $\lambda_{67} = 0$ for simplicity

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Chien-Yi Chen, Haolin Li, MJRM 1708.00435

$$h_{2,3}
ightarrow Z \ h_1
ightarrow bb \ \ell\ell$$

 $Z h_a h_b$ couplings

$$g_{2z1} \propto -\alpha_b + O(\alpha_b \theta) \quad \longleftarrow \quad \text{Vanishes in CP conserving limit}$$
$$g_{3z1} \propto -\theta + O(\alpha_b^2) \quad \longleftarrow \quad \text{Vanishes in alignment limit}$$

 $\theta = \beta - \alpha - \pi/2$

"Alignment": $\theta = 0$

Chien-Yi Chen, Haolin Li, MJRM 1708.00435

$$h_{2,3} o Z \ h_1 o bb$$
 ll

50

LHC & EDM Future

- Orange: LHC 8 TeV •
- Blue: 300 fb⁻¹ •
- Magenta: 3 ab⁻¹ ٠

Apply BDT for 14 TeV

$$g_{2z1} \propto -\alpha_b + O(\alpha_b \theta)$$
$$g_{3z1} \propto -\theta + O(\alpha_b^2)$$
64

Low-Energy / High-Energy Interplay

Higgs Portal CPV

Low-Energy / High-Energy Interplay

Higgs Portal CPV

- Alignment limit: LHC discovery → Non-zero radium and electron (paramagnetic) EDMs should be observed
- Away from alignment: Non-zero EDM → LHC null result would preclude CPV 2HDM for > modest deviation from alignment

Low-Energy / High-Energy Interplay

Higgs Portal CPV: Source for EWBG?

Dorsch et al, 1611.05874

 $lpha_b \propto \delta_1$ – δ_2

V. Outlook

- Low-energy tests of fundamental symmetries provide powerful windows into key open questions in fundamental physics
- There exists a rich interplay with BSM searches at the high energy frontier & both frontiers are essential
- Exciting opportunities for discovery and insight lie at the frontier interface

Back Up Slides

Lepton Number

Interpreting the Result

Interpreting a Positive Result

72
Interpreting a Null Result

Neutrino Mass Hierarchy

Expected significance for rejecting wrong hierarchy hypothesis

Blennow et al, 1311.1822

Interpreting a Positive Result

Ονββ-Decay: TeV Scale LNV

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV Scale LNV

Effective operators:

$$\begin{split} \mathcal{L}_{\mathrm{LNV}}^{\mathrm{eff}} &= \frac{C_1}{\Lambda^5} \mathcal{O}_1 + \mathrm{h.c.} \\ \mathcal{O}_1 &= \bar{Q} \tau^+ d \bar{Q} \tau^+ d \bar{L} L^C \end{split}$$

$$g_{\rm eff} = C_1(\Lambda)^{1/4}$$

80

Ονββ-Decay: TeV Scale LNV

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

0vββ / LHC Interplay: Matrix Elements

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

0vββ / LHC Interplay: Matrix Elements

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Ονββ-Decay: TeV Scale LNV

LHC Production & $0\nu\beta\beta$ -Decay

Helo et al, PRD 88.011901, 88.073011

> 3 Light Neutrinos

Lightest neutrino mass (eV) ightarrow

Positive result would be consistent with 3+1 light active v's & NH, IH, or quasi-deg regime, but not definitive as to mechanism

86

> 3 Light Neutrinos

Lightest neutrino mass (eV) ightarrow

Sterile Neutrinos & 0v\beta\beta-Decay

3 active light neutrinos

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = |\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3}|$$

3+1 active light neutrinos

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = \left|\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3} + \mu_4 e^{i\alpha_4}\right|$$

Sterile Neutrinos & 0v\beta\beta-Decay

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = |\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3}|$$

3+1 active light neutrinos

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = \left|\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3} + \mu_4 e^{i\alpha_4}\right|$$

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Higgs Portal CPV: EDMs & LHC

Chien-Yi Chen, Haolin Li, MJRM 1708.00435

$$h_{2,3} \rightarrow Z \ h_1 \rightarrow bb \ \ell\ell$$

LHC Future

- Blue: 300 fb⁻¹
- Magenta: 3 ab⁻¹

- Validated vs. ATLAS 8 TeV: 1502.04478
- Apply BDT for 14 TeV

$$g_{2z1} \propto -\alpha_b + O(\alpha_b \theta)$$
$$g_{3z1} \propto -\theta + O(\alpha_b^2)$$
93

CPV for EWBG

Flavored EW Baryogenesis

Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$\frac{m_f}{v}\kappa_\tau(\cos\phi_\tau\bar{\tau}\tau + \sin\phi_\tau\bar{\tau}i\gamma_5\tau)h$$

Guo, Li, Liu, R-M, Shu 1609.09849 Chiang, Fuyuto, Senaha 1607.07316

Flavored EW Baryogenesis

CPV h ightarrow au au

 $\Delta \phi_{\tau} \sim 10^{\circ}$: 3 ab⁻¹ @ LHC 14 Flavor basis (high T)

 $\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$

Mass basis (T=0)

$$\frac{m_f}{v}\kappa_{\tau}(\cos\phi_{\tau}\bar{\tau}\tau + \sin\phi_{\tau}\bar{\tau}i\gamma_{5}\tau)h$$

Guo, Li, Liu, R-M, Shu 1609.09849 Chiang, Fuyuto, Senaha 1607.07316

Two-Step EW Baryogenesis

Inoue, Ovanesyan, R-M: 1508.05404

Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

 $H \rightarrow$ Set of "SM" fields: 2 HDM

(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

Triplet phase Singlet phase

Two-Step EW Baryogenesis & EDMs

Two cases: (A) $\delta_{S} = 0$ (B) $\delta_{\Sigma} = 0$

