21st Particle & Nuclei International Conference 1 – 5/09/2017, Beijing

Nuclear Astrophysics deep underground

Rosanna Depalo Università degli Studi di Padova and INFN Padova

Istituto Nazionale di Fisica Nucleare

Why Nuclear Astrophysics?

- Stellar evolution strongly depends on nuclear reactions: Nuclear fusion cross sections are key parameters in stellar modelling
- Nuclear reactions are responsible for the synthesis of the elements in the cosmos: High precision data are very often required

PANIC 2017

Charged-particle-induced reactions

$$T_{sun} = 15 \text{ MK}$$
 $E_{kin} \approx 1 \text{ keV} << E_{Coul} (0.5 - 2 \text{ MeV})$

$$\sigma(E) = \frac{1}{E} S(E) e^{-b/\sqrt{E}}$$

The nuclear fusion cross section decreases exponentially with the energy!

The <u>Gamow peak</u> is the energy window in which non resonant reactions take place in stellar environment

Charged-particle-induced reactions

At astrophysical energies, nuclear fusion cross sections can be very low (pbarn – nbarn) \rightarrow environmental background dominates over signal

Gran Sasso National Laboratories

Main sources of background in a gamma ray spectrum:

Environmental radioactivity: ²³⁸U and ²³²Th chains and ⁴⁰K

Cosmic rays: mainly muons at sea level

Gran Sasso National Laboratories

Cosmic ray flux attenuation: $\mu \rightarrow 10^{-6}$ n $\rightarrow 10^{-3}$

The Laboratory for Underground Nuclear Astrophysics

Reactions studied since 1992

Big Bang nucleosynthesis

Recently published from LUNA: ¹⁷O(p,α)¹⁴N

In AGB stars (T=0.03-0.1 GK) CNO cycle takes place in H burning shell

CNO signature is observed in outer layers

¹⁷O and ¹⁸O are tracers of CNO nucleosynthesis at high temperatures

Information on mixing processes can be derived if the cross sections of all reactions involved are well known

Recently published from LUNA: ¹⁷O(p,α)¹⁴N

Two narrow resonances at **70** and **193 keV** dominate the ${}^{17}O(p,\alpha){}^{14}N$ reaction rate at astrophysical temperatures, both were re-measured at LUNA

The new LUNA rate is almost a factor of 2 higher than the rate previously adopted, compatible with the hypothesis of oxygen enriched pre-solar grains in group II produced by massive AGB stars

Bruno et al., EPJ A 51, 94 (2015) Bruno et al., PRL 117, 142502 (2016) Lugaro et al., Nature Astronomy 1, 0027 (2017)

Recently published from LUNA: ²²Ne(p,γ)²³Na – HPGe Phase

The Neon - Sodium cycle strongly influences the abundance of Ne, Na, Mg and Al in:

- Hydrostatic H burning:
 - Core H burning in massive stars
 - Shell H burning in Red Giant Branch and Asymptotic Giant Branch stars (Na-O anticorrelation problem)

Explosive H burning:

- Classical novae
- Type Ia supernovae

²²Ne(p,γ)²³Na is the most uncertain reaction in the NeNa cycle

Recently published from LUNA: ²²Ne(p,γ)²³Na – HPGe Phase

Recently published from LUNA: ²²Ne(p,γ)²³Na – HPGe Phase

Recently concluded experiments: ²²Ne(p,γ)²³Na – HPGe phase

Windowless gas target with recirculation system ²²Ne gas enriched at 99.9%

- \bigcirc 2 HPGe γ ray detectors collimated at 55° and 90°
- Pb + Cu shielding (~ 30 cm)

F. Cavanna et al EPJ A 50, 179 (2014)

Recently concluded experiments: ²²Ne(p,γ)²³Na – HPGe phase

 \bigcirc <u>3 resonances (156.2, 189.5, 259.7 keV) observed for the first time:</u> → new gamma decay modes and branching ratios

→ Energies of observed resonances measured with 0.7 keV uncertainty

New upper limits on 71, 105 and 215 keV resonances: 2 orders of magnitude (or more) lower compared to the previous direct measurement

Recently concluded experiments: ²²Ne(p,γ)²³Na – BGO phase

Goal of the BGO phase: reduce further the upper limits on resonances at 71 and 105 keV, direct capture

Resonances at 156.2, 189.5 and 259.7 keV also re-measured for consistency check

LUNA 400 kV program 2016 - 2019

- $^{2}H(p,\gamma)^{3}He \rightarrow ^{2}H$ abunadnce in BBN
- ⁶Li(p,γ)⁷Be \rightarrow BBN & Li depletion in early stages of star evolution
- ²²Ne(α,γ)²⁶Mg \rightarrow competes with ²²Ne(α,n)²⁵Mg neutron source
- ¹³C(α ,n)¹⁶O → neutron source for s-process
- ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{13}C(p,\gamma){}^{14}N \rightarrow$ relative abundance of ${}^{12}C/{}^{13}C$ in the deepest layers of H-rich envelopes of any star

Ongoing experiments: ²H(p,γ)³He

PRIMORDIAL ABUNDANCE OF ²H:

 <u>Direct measurements</u>: observation of absorption lines in DLA system

$$\left[\frac{D}{H}\right]_{OBS} = (2.547 \pm 0.033) \cdot 10^{-5}$$

```
*R. Cooke at al., ApJ. 830 (2016)
```

• <u>BBN theory</u>: from the cosmological parameters and the cross sections of the processes involved in ²H creation and destruction

$$\left[\frac{D}{H}\right]_{BBN} = (2.65 \pm 0.07) \cdot 10^{-5}$$

*E. Di Valentino et al., Phys. Rev. D 90 (2014)

Ongoing experiments: ²H(p,γ)³He

PRIMORDIAL ABUNDANCE OF ²H:

 <u>Direct measurements</u>: observation of absorption lines in DLA system

$$\left[\frac{D}{H}\right]_{OBS} = (2.547 \pm 0.033) \cdot 10^{-5}$$

• <u>BBN theory</u>: from the cosmological parameters and the cross sections of the processes involved in ²H creation and destruction

$$\left[\frac{D}{H}\right]_{BBN} = (2.65 \pm 0.07) \cdot 10^{-5}$$

*E. Di Valentino et al., Phys. Rev. D 90 (2014)

Error mainly due to the ²H(p,y)³He reaction!

Reaction	$\sigma_{^{2}\mathrm{H/H}} \times 10^{5}$
$p(n, \gamma)^2 \mathbf{H}$	± 0.002
$d(p, \gamma)^3$ He	± 0.062
$d(d, n)^3$ He	± 0.020
$d(d, p)^3 \mathrm{H}$	± 0.013

*E. Di Valentino et al., Phys. Rev. D 90 (2014) 023543

^{*}R. Cooke at al., ApJ. 830 (2016)

Ongoing experiments: ²H(p,γ)³He

The reaction is being studied in two phases with different setups in order to lower the final systematics uncertainties (final goal 3%):

- **BGO** detector setup with high efficiency, to extend data down to very low energy $E_n = 70 \text{keV}$
- **HPGe** detector setup with extended gas target to study the angular distribution with peak shape analysis

Ongoing experiments: ⁶Li(p,γ)⁷Be

The ${}^{6}Li(p,\gamma){}^{7}Be$ reaction is involved in Big Bang Nucleosynthesis as well as in lithium depletion in the early stages of stellar evolution.

A resonance-like structure in the ${}^{6}\text{Li}(p,\gamma){}^{7}\text{Be}$ cross section at center of mass energy of 195 keV was discovered in a recent experiment [J. J. He et al. Phys. Lett. B 725, 287 (2013)].

Measurement of the ${}^{6}Li(p,\gamma){}^{7}Be$ cross section recently performed at LUNA

Ongoing experiments: ⁶Li(p,γ)⁷Be

- Ep = 60 340 keV
- Evaporated ⁶Li solid targets (95% isotop. enrichment): ⁶Li₂O, ⁶Li₂WO₄, ⁶LiCl
- 1 HPGe in close geometry
- 1 Si detector for ⁶Li(p,⁴He)³He

Underground laboratories worldwide

Many reactions cannot be studied with a 400 kV accelerator alone (stellar Helium and Carbon burning, neutron sources for astrophysical s-processes etc):

New, higher energy underground accelerators are needed!

The LUNA-MV project

- Inline Cockcroft Walton accelerator
- TERMINAL VOLTAGE: 0.2 3.5 MV
- Precision of terminal voltage reading: 350 V
- **Beam energy reproducibility:** 0.01% TV
- Beam energy stability: 0.001% TV / h
- Beam current stability: < 5% / h</p>

A 80 cm thick concrete shielding is foreseen. This will reduce the neutron flux just outside the shielding to a value about one order of magnitude lower than the neutron flux at LNGS, $\Phi = 3 \cdot 10^{-6}$ n/(cm² s)

LUNA-MV scientific program (2019 - 2023)

In 2016 a scientific proposal has been presented to the LNGS Scientific Committee (SC) containing key reactions (mainly He and C burning and neutron sources for the s-process) to be studied in the first years of the LUNA-MV machine:

¹⁴N(p,γ)¹⁵O at high energies (also used as commissioning measurement) ¹²C(¹²C,α)²⁰Ne, ¹²C(¹²C,p)²³Na ¹³C(α,n)¹⁶O ²²Ne(α,n)²⁵Mg

Many other reactions are extremely important for He and C burning and will be included in the future program of the LUNA-MV

LUNA-MV status and schedule

Action	Date
Beginning of the clearing works in Hall B	February 2017
Beginning of the construction works in Hall B	December 2017
Beginning of the construction of the plants in the LUNA-MV building	March 2018
Completion of the new LUNA-MV building and plants	September 2018
LUNA-MV accelerator delivering at LNGS	December 2018
Conclusion of the commissioning phase	May 2019
Beginning First Experiment	June 2019

Thank you!

The LUNA Collaboration

- L. Csedreki, G.F. Ciani*, L. Di Paolo, A. Formicola, I. Kochanek, M. Junker | **INFN LNGS** *I*GSSI*, Italy
- D. Bemmerer, K. Stoeckel , M. Takacs | HZDR Dresden, Germany
- C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy
- C. Gustavino | INFN Roma 1, Italy
- Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Monarch University Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- A. Guglielmetti | Università di Milano and INFN Milano, Italy
- A. Best, A. Di Leva, G. Imbriani | Università di Napoli and INFN Napoli, Italy
- G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom
- G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli,
- A. Valentini | Università di Bari and INFN Bari, Italy