

Recent results of B decays from Belle

Martin Heck for the Belle Collaboration | 01. September 2017

Institut für Experimentelle Teilchenphysik (ETP)

Overview

- key characteristics of Belle
- $B \rightarrow D^* \tau \nu$ new measurement of τ polarization and $R(D^*)$
- $B \rightarrow K^* l^+ l^-$ lepton-flavour-dependent angular analysis
- other recent results on rare B decays
 - $\ \ \, \ \ \, B \ \, \rightarrow \ h^{(*)} \, \nu \, \nu \,$
 - $\quad B^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu$
- summary & outlook

Key Characteristics of Belle

- asymmetric electron-positron collider at Y(4S)-energy
- 772 million BB pairs

9.46 10.00 10.02 10.54 10.58 Mass (GeV/c²) BB threshold SC solenoid 1.5T Running: 1999 - 2010 CsI(Tl) $16X_{0}$ **TOF** counter Sukuba 8 GeV e **Central Drift Chamber** small cell +He/C₂H₆ Tokyo Si vtx. det. μ / K_r detection 東京 3/4 lyr. DSSD 14/15 lyr. RPC+Fe

Madrons)(nb)

σ(e⁺e`

Y(1S)

Y(2S)

Y(3S)

10.34

1.1.20

10.37

witten

Υ(4S)

10.62

$B \rightarrow D^* \tau \nu$ - Polarization and R(D*)

Phys. Rev. Lett. 118, 211801

- strategy:
 - recombine one of the B mesons of the Y(4S) for this analysis, hadronic tagging is used, as it delivers a better resolution for p(B_{signal}), which is ~ 331 (326) MeV/c in the (~known) Y(4S)-cms for B⁺ (B⁰) mesons. $\bar{\nu}_{\tau}$

 B_{tag}

 $B_{\rm signal}$

D*

- recombine signal side in all reasonable D* channels and π/ρ , light leptons instead of π/ρ for normalisation channels
- Require kinematics of signal events to be consistent with the signal as well as no additional tracks, no additional good π^0 , less than 1.5 GeV of energy in the ECL left.

π, ρ

$B \rightarrow D^* \tau \nu$ - Polarization

• Due to our knowledge of B_{signal} momentum, we can calculate the helicity angle $\cos \theta_{hel}$:

angle between the τ -daughter momentum and the opposite of the momentum of the τv system in the τ rest frame

Only $\cos \theta_{hel}$ between -1 and 0.8 is used, for further analysis, sample is divided into two categories:

 $\cos \theta_{hel}$ larger or smaller than zero

$B \rightarrow D^* \tau v \quad \text{- Results}$

- $P_{\tau}(D^{*}) = [2(N_{\rm sig}^{\rm F} N_{\rm sig}^{\rm B})] / [\alpha(N_{\rm sig}^{\rm F} + N_{\rm sig}^{\rm B})]$
 - F(orward) denotes events with $\cos \theta_{hel} > 0$
 - B(ackward) denotes events with $\cos \theta_{hel} < 0$
 - a denotes a factor for the sensitivity of the respective final state
 a = 1 for π, a = 0.45 for ρ
 - SM prediction for polarization: (Tanaka et al., PRD 87. 0.4028)

 $P_{\tau}(D^*) = -0.497 \pm 0.013$

$B \rightarrow D^* \tau \nu$ - BR Overview

- world average differs by
 ~4 σ from theory predictions
- when thinking about New Physics solutions to the discrepancy, take into account, that we might not actually see Ts, but perhaps light leptons + missing mass/energy

$B \rightarrow K^* \ l^+ \ l^- \quad \text{- angular analysis for } \mu/e$

Phys. Rev. Lett. 118, 111801

- strategy:
 - reconstruct B mesons (B+/B⁰) in **K***[$K^+ \pi/K^+ \pi/K_s \pi^+$] **l**⁺ **l**⁻ ($l = \mu/e$)
 - Extract observables P'_i (explanation see later)

$\mathbf{B} \rightarrow \mathbf{K^*} \mathbf{l^+} \mathbf{l^-} - \mathbf{m}_{bc}$ signal extraction

- Most backgrounds don't peak in the beam constraint mass $M_{\rm bc} = \sqrt{E_{\rm beam}^2/c^4 |\vec{p}_B|^2/c^2}$
- background distributions in the observables estimated from sideband
- Small peaking backgrounds are evaluated on MC to be very small

$\mathbf{B} \rightarrow \mathbf{K^*} \mathbf{l^+} \mathbf{l^-} - \mathbf{Results}$

• Fit results for P'₄ and P'₅ for all decay channels and separately for the electron and muon modes. The first uncertainties are statistical and the second systematic.

$\mathbf{B} \rightarrow \mathbf{K^*} \mathbf{l^+} \mathbf{l^-}$ - Results in Numbers

q^2 in ${\rm GeV}^2/c^2$	P_4'	$P_4^{e\prime}$	$P_4^{\mu\prime}$	P_5'	$P_{5}^{e}{}'$	$P_{5}^{\mu\prime}$
[1.00, 6.00]	$-0.45^{+0.23}_{-0.22} \pm 0.09$	$-0.72^{+0.40}_{-0.39} \pm 0.06$	$-0.22^{+0.35}_{-0.34} \pm 0.15$	$0.23^{+0.21}_{-0.22} \pm 0.07$	$-0.22^{+0.39}_{-0.41} \pm 0.03$	$0.43^{+0.26}_{-0.28} \pm 0.10$
[0.10, 4.00]	$0.11^{+0.32}_{-0.31} \pm 0.05$	$0.34^{+0.41}_{-0.45} \pm 0.11$	$-0.38^{+0.50}_{-0.48} \pm 0.12$	$0.47^{+0.27}_{-0.28} \pm 0.05$	$0.51^{+0.39}_{-0.46} \pm 0.09$	$0.42^{+0.39}_{-0.39} \pm 0.14$
[4.00, 8.00]	$-0.34^{+0.18}_{-0.17} \pm 0.05$	$-0.52^{+0.24}_{-0.22} \pm 0.03$	$-0.07^{+0.32}_{-0.31} \pm 0.07$	$-0.30^{+0.19}_{-0.19} \pm 0.09$	$-0.52^{+0.28}_{-0.26} \pm 0.03$	$-0.03^{+0.31}_{-0.30} \pm 0.09$
[10.09, 12.90]	$-0.18^{+0.28}_{-0.27} \pm 0.06$	-	$-0.40^{+0.33}_{-0.29} \pm 0.09$	$-0.17^{+0.25}_{-0.25} \pm 0.01$	-	$0.09^{+0.29}_{-0.29} \pm 0.02$
[14.18, 19.00]	$-0.14^{+0.26}_{-0.26} \pm 0.05$	$-0.15^{+0.41}_{-0.40} \pm 0.04$	$-0.10^{+0.39}_{-0.39}\pm0.07$	$-0.51^{+0.24}_{-0.22}\pm0.01$	$-0.91^{+0.36}_{-0.30}\pm0.03$	$-0.13^{+0.39}_{-0.35}\pm0.06$

$\mathbf{B} \rightarrow \mathbf{K^*} \ \mathbf{l^+} \ \mathbf{l^-} - \mathbf{Lepton} \ \mathbf{Universality} \ \mathbf{Test}$

$Q = P^{\mu} - P^{e}$

Good agreement with measurements from LHC experiments.

Note: This is the combined e/μ value from Belle. Discrepancy with SM is bigger when taking P'_5^{μ}.

$\mathbf{B} \rightarrow \mathbf{h^{(*)} v v}$

PRD accepted, https://arxiv.org/abs/1702.03224

- could be an alternative way to see the same kind of New Physics, that might be in $B \rightarrow K * l^+ l^-$
- basic strategy similar to $B \rightarrow D^* \tau v$:
 - recombine one of the B mesons of the Y(4S) using *semileptonic tag-side decays* in the most recent measurement
 - select the h^(*)
 - veto any additional tracks, neutral pions/kaons
 - fit the amount of energy remaining in the calorimeter for the remaining events

$\mathbf{B} \rightarrow \mathbf{h^{(*)} v v}$ - Limits Overview

16

$\mathbf{B} \rightarrow \mathbf{h^{(*)} v v}$ - Limits Overview

$\mathbf{B} \rightarrow \mathbf{h^{(*)} v v}$ - Limits Overview

$\mathbf{B}^+ \rightarrow \boldsymbol{\mu}^+ \boldsymbol{\nu}$

publication in preparation

- strategy:
 - Identify a muon
 - Fit the muon momentum in the Y(4S) rest frame and the output of an multivariate classifier

$B^+ \to \mu^+ \nu$

• 2.4 σ significance. $\mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu}) \in [2.9, 10.7] \times 10^{-7}$ at the 90% C.L.

- Two sided limit compatible with SM value of $(3.80 \pm 0.31) \ge 10^{-7}$ (value debatable due to V_{ub} situation)
- Extensive studies of $u \mid v$ backgrounds

Summary & Outlook

- Polarisation & R(D*) in yet another Belle analysis of B → D* τ v using hadronic final states for τs is well compatible with the Standard Model.
- Belle's analysis of K* l⁺ l⁻ confirms, there is reason for excitement.
- B → h^(*) v v limits are less than an order of magnitude away from the Standard Model, future experiments will likely observe strange final states.
- B⁺ → µ⁺ v is almost within reach and will be seen either by Belle or very early in future flavour experiments.