

Development of Detectors for Physics at the Terascale Beijing, 4 September 2015

Attilio Andreazza

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Istituto Nazionale di Fisica Nucleare

- Focused in scope:
 - technologies for the High-Luminosity LHC upgrades
 - They are the R&D for high-energy hadron colliders
 - and for lepton colliders: FCC-ee, CepC. ILC, CLIC
- Sections:
 - Silicon trackers
 - Gas tracking systems (central trackers and muon systems)
 - Calorimetry
- References at the end of the presentation
 - many from TIPP 2017, here in Beijing

Disclaimer: due to the limited time, this is a very personal selection of topics, even within the limited scope. I regret that I'll not be able to talk about trigger, computing, particle ID and that I'll not cover even some paramount LHC experiments.

∛ 66. 1 −3, 23

- Emphasis on high precision, even at low p_T (for LHC standards)
- Cross section: 30 nb (Z peak) 100 fb (high energy processes like ZH, tt)
- Luminosity: 1—20 ×10³⁴ cm⁻²s⁻¹

Silicon detectors are still the standard solution for:

- precision tracking
- high-density, high-rate and high-radiation environments

New solutions for pixel detectors and timing layers

PRECISION TRACKING

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Istituto Nazionale di Fisica Nucleare

The two frontiers of silicon detectors

UNIVERSITÀ DEGLI STUDI DI MILANO

INFN

HL-LHC Trackers Upgrade

UNIVERSITÀ DEGLI STUDI DI MILANO

INFN

Monolithic Active PixelS

PWELL

EED DWEI

MAPS are a possible choice for environments with lower rates: ONOLITHI

ALPIDE

 $27 \times 29 \,\mu m^2$

asynchronous

 $<40 \text{ mW/cm}^2$

~2 µs

- Heavy ion experiments: STAR, ALICE
- Interesting for FCC-ee, CepC, ILC, CLIC
- Small multiple scattering term:

UNIVERSITÀ DI MILANO

- Low mass detector: few tens of μ m active region
- Low power consuption: little or no cooling system material

RD53

 $50 \times 50 \ \mu m^2$

synchronous

 1 W/cm^2

25 ns

or $25 \times 100 \,\mu m^2$

ALICE ALPIDE Ref. 11

- Typical requirements for future lepton colliders:
 - point resolution < 3 μ m \rightarrow pixel size < 10 μ m
 - material < 0.15% X₀/layer

Pixel size

Readout

Time stamping

Power

Depleted Monolithic Active PixelS

- Found Aies accepted ing qualifying wafers or epitaxial substrates with mid-high resistivity
- 130-180 nm feature size

UNIVERSITÀ DEGLI STUDI DI MILANO

- deep submicron technologies needed for the design of radiation hard electronics
- multiple-well process to decouple frontend electronics from the sensitive region
- Also SOI processes Ref. 14

UNIVERSITÀ DEGLI STUDI DI MILANO Timing and pileup

- With increasing rate of multiple interactions, individual pile up events cannot be anymore separated spatially
- But some separation can be achieved by precise timing information:
 - Events in the same position can be displaced in time by $\sigma_t = \frac{\sigma_z}{c} \approx \frac{5 \text{ cm}}{c} \approx 180 \text{ ps}$
 - − State-of-art is NA62 GigaTracker $\sigma_t \approx 200$ ps
 - Need to achieve σ_t =10-30 ps
- |E| Low Gain Avalanche Diodes Ref. 15 300 kV/cm exploit local amplification in silicon p⁺multiplication layer n⁺⁺ electrode to increase **dV/dt** 20 kV/cm high res p⁻ substrate p⁺⁺ electrode 10 kΩ cm $\sigma_t^2 = \left(\frac{V_{th}}{dV/dt}\Big|_{rms}\right)^2 + \left(\frac{\text{Noise}}{dV/dt}\right)^2 + \sigma_{arrival}^2 + \sigma_{dist}^2 + \sigma_{TDC}^2$ pulse 1 pulse 2 arrival distortion $\sigma_{\rm noise}^2$ $\sigma_{ ext{time walk}}^2$ fluct. low w-field
 - Radiation hardness still to be addressed (acceptor removal affects the multiplication

CMS Simulation: HL-LHC beamspot - <N__> = 140

 $\sigma_t \approx$

CMS Simulation: CRAB-KISSING beamspo

-15

RMS = 4.7 cm

15 20 z_{vertex} [cm]

density [cm⁻¹] 01

^{per-event} vertex

density [cm⁻¹]

Large volume / moderate density environment:

- central tracking of lepton collider, heavy ions experiments
- muon systems

TRACKING WITH GAS DETECTORS

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

UNIVERSITÀ **Micro-Pattern Gas Detector DEGLI STUDI**

Sauli (1997)

Micromegas - Meshes

DI MILANO

Giomataris (1998)

Breskin (2004)

GEM/THGEM - holes

10 fold larger than GEM

http://www-flc.desy.de/tpc/projects/GEM simulation/

- Separation between drift and multiplication region
- Flexible techniques that can provide multiple incarnations **RD51** Collaboration

S. Bressler @ TIPP 2017

LHC Muon Systems upgrades

- ATLAS New Small Wheels Ref. 18
 - Cope with 15 kHz/cm²

UNIVERSITÀ DEGLI STUDI DI MILANO

- Tracking: 15% pT resolution at 1 TeV
- Trigger: muon direction online with 1 mrad resolution
- 8 layers of Thin Gap Chamber (trigger) and 8 of MicroMegas
- 1200 m² / 2.4M readout channels
- CMS Ref. 19
 - Increase robustness in forward reagio
 - Rate 10 kHz/cm²
 - Triple GEM amplification

ALICE TPC continuous readout

Ref. 20

- Typical operation mode for TPC:
 - MWPC readout planes

UNIVERSITÀ DEGLI STUDI

DI MILANO

INFN

- Gating grid to avoid ion backflow (10⁻⁵ suppression)
- Rate limitation few kHz
- At Run3 many events will overlap
- Multiple GEM stacks
 - ion backflow <1%
 - maintaining good dE/dx resolution

pad plane

continuous readout!

Alco considered for ILC and CepC

Beijing, 4 September 2017

L. Lavezzi on Sunday

INFN

- Support internal layers of drift chamber:
 - KLOE-2 @ DAFNE, BESIII Upgrade
 @Beijing, CLAS12 @JLAB, ASACUSA
 @CERN, MINOS @FERMILAB,
 CMD-3 Upgrade @ BINP
- Possibile to implement stereo readout on anode
- Timing on electrode: µTPC mode

The quest for higher granularity:

• in space and time

and for the ultimate hadron jet energy resolution

CALORIMETRY

UNIVERSITÀ DEGLI STUDI DI MILANO HL-LHC Calorimetry upgrades

- Calorimeters are a structural asset of an experiment
- Most of the sensors capable to cope with aging and radiation at the HL-LHC
- Upgrade of the readout electronics can improve performance for the more demanding HL-LHC conditions:
 - increase data bandwidth (more information: timing, granularity)
 - trigger algorithms on off-detector high performance FPGAs
 - CMS barrel ECAL

- PbWO₄ crystals APD readout:
- **Run with colder APD:** 18 °C \rightarrow 9 °C, 35% noise reduction
- New Very Front End cards
 - reduce shaping time
 - local digitization
- New Front-End cards
 - Streaming of data: Single channel data link at 160 MHz
- Off-detector signal processing, with full granularity

Similar plans for ATLAS LAr and Tile calorimeters

APNIC 2013

INFN

A. Andreazza - Detector Develoments

Target 30 ps time resolution

CMS ECAL upgrade

UNIVERSITÀ

DEGLI STUDI DI MILANO

Combination of faster shaping time and 160 MS/s allows to reach the 30 ps resolution

D. A. Petyt and P. Meridiani on Saturday

- achieved in 2016 testbeams
- provide performance at 200 pileup HL-LHC similar to the ones of LHC running
- need to ensure it at the whole system level

Jet reconstruction in *e*⁺*e*⁻ experiments

- A requirement for high-precision physics at e⁺e⁻colliders is W→jj / Z→jj separation.
 - 3 4% jet energy resolution at 50 GeV
- Ref. 29 Particle-Flow:
 - jet energy sharing:
 - ≈60% charged particles → central tracker
 - ≈30% photons → electromagnetic calorimeter
 - $\approx 10\%$ neutral hadron \rightarrow hadronic calorimeter
 - 90% of the energy may be obtained from high precision measurements
 - requires complex reconstruction algorithms
 - very high granularity detectors to reconstruct the shower development
 - Dual readout:
 - determine e.m. and had. components of hadronic showers by reading out two different signals (for example: scintillation and Cherenkov light)

UNIVERSITÀ DE GLI STUDI DI MILANO High-Granularity Calorimeters

Ref. 30

INFN

CMS HGCal for HL-LHC

• Silicon sections

hexagonal modules (from 8" wafers)

Read-Out chip

Si-sensor cell

HGCa

Back End

wafer

Back End

Global

Trigger

С

0

R

А

0

R

– thickness 100—300 μm

UNIVERSITÀ DEGLI ST<u>UDI</u>

DI MILANO

- 0.5-1.0 cm² hexagonal cells

Stage-2

24 FPGAs

- 11-bit ADC/TOT
- Time of Arrival O(50 ps)

- 3×3 cm scintillator tiles
- interleaved with steel plates

Level-1 trigger

- Trigger cells in FE chip
- 2D (1st stage) and 3D (2nd stage)
 clusterization on FPGS (Vitrtex7)
- Trigger decision in 5 μs

Front

End

Beijing, 4 September 2017

3.5**u**s

Stage-

28 FPGAs

20 FPGAs

CE-E

CE-H

Dual Readout Approach

RD52 – DREAM (Dual REAdout Method)

UNIVERSITÀ DEGLI STUDI DI MILANO

- Scintillation light: dE/dx of charged particles
- Cherenkov light: from e, e.m. component of shower

Test beam results and simulations show a 30%/VEresolution can be achieved for a 4π detector.

Under study readout with SiPM (instead of PM):

- more compact readout
- it allows longitudinal segmentation and operation in magnetic field
- higher granularity

Bundles of:

Cerenkov fibers

Summary and outlook

- Innovations in detector techniques are continuing to improve the performance of nuclear and particle physics apparatuses:
 - developments in silicon detectors, MPGD and calorimetry
 - crossover between applications
 - timing as a method to fight against pileup (4-dimensional detecors)
- Some key items not mentioned enough:
 - custom ASICS are key players in extracting the information from the detector
 - off-detector computing power (either CPU or high-end FPGA): fast and selective trigger decisions
- Some of the open questions for the future:
 - What will be the best concept for new e⁺e⁻ detector?
 - full silicon tracker or gas-based central tracking?
 - High-granularity or dual readout calorimetry?
 - For the next next energy and luminosity steps of hadron colliders:
 - Will silicon detector achieve the required performance?
 - Which technology for high rate muon system?

23 m

References (1)

- 1. F. Bordry, LHC+FCC @ PANIC 2017
- 2. Q. Qin, CepC+SppC @ PANIC 2017
- 3. S. Michizono, ILC @ PANIC 2017
- 4. ATLAS ITk Strip Detector TDR (2017)
- 5. B. Schwenker, *Development and construction of the Belle II DEPFET pixel vertex detector* @ VERTEX 2016
- 6. K. Nakamura, *The Belle II SVD detector*@ VERTEX 2016
- H. Hayward, Overview and developments for the Phase-II upgrade of the inner tracker of the ATLAS experiment @ EPS-HEP 2017
- 8. S. Ahuja, *The CMS Tracker Upgrade for HL-LHC* @ EPS-HEP 2017
- 9. J. Lange, Radiation hardness of smallpitch 3D pixel sensors up to HL-LHC fluences, M. Meschini, Pixel Detector Developments for Tracker Upgrades of the High Luminosity LHC @ TIPP 2017

- 10. M. Benoit, *The Phase-II ATLAS ITk Pixel* Upgrade @ TIPP2017
- 11. S. Beolé, *The upgrade of the ALICE ITS* @ VERTEX 2016, P. Camerini, *The ALICE ITS Upgrade* @ EPS-HEP 2017
- 12. N. Wermes, Development of Tracking and Timing Detectors @ FCC Week, Berlin 2017
- 13. H. Pernegger, First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors @ TREDI 2017
- 14. Y. Arai, SOI Monolithic Pixel Detector Technology @ VERTEX 2016
- 15. N. Cartiglia et al., NIM A796 141—148, NIM A845 47—51; H. Sadrozinsky et al., NIM A730 226-231, NIM A831 18-23
- 16. B. Lenzi, A High-Granularity Timing Detector for the Phase-II Upgrade of the ATLAS Calorimeter System @ TIPP 2017

References - Gas Detectors

- 17. S. Bressler, *Recent development of Micro Pattern Gaseous detectors* @ TIPP 2017
- 18. M. lengo, The upgrade of the forward Muon Spectrometer of the ATLAS Experiment: the New Small Wheel project, EPS-HEP 2017 ATLAS Collaboration, New Small Wheel Technical Design Report, ATLAS-TDR-20
- 19. CMS Collaboration, CMS technical design report for the muon endcap GEM upgrade, CMS-TDR-013
- 20. C. Lippmann, A continuous-readout TPC for the ALICE upgrade @ EPS-HEP 2017
- 21. H. Qi, Investigation of the TPC detector prototype with laser calibration @ PANIC 2017
- 22. J. Bennet, *The Belle II Experiment* @PANIC 2017
- 23. A. Blondel, Status of FCC-ee/FCC-hh @ LEPTON-PHOTON 2017

- 24. L. Lavezzi, *The new Cylindrical GEM Inner Tracker of BESIII* @ PANIC 2017
- 25. D. A. Petyt, The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC @ PANIC 2017
- 26. P. Meridiani, *Precision timing calorimetry* with the upgraded CMS ECAL @ PANIC 2017
- 27. F. Tang, Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC @ TIPP 2017
- 28. M. Hils, Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC @ TIPP 2017
- 29. E. Sicking, *Detector challenges for highenergy e*⁺*e*⁻ *colliders* @ TIPP2017
- 30. G. Grenier, *Technological Prototypes and Result Highlights of Highly Granular Calorimeters* @ EPS-HEP 2017
- 31. Y. Kawamura and H. Wang, for the ALICE-FoCAL collaboration @ TIPP2017

References - Calorimetry

- 32. L. Mastrolorenzo, *The CMS High Granularity Calorimeter for HL-LHC* @ PANIC 2017
- 33. S. Jain, Large scale beam-tests of silicon and scintillator- SiPM modules for the CMS High Granularity Calorimeter for HL-LHC @ PANIC 2017
- 34. R. Wigmans, New results from the RD52 project, NIM A824 (2016) 721
- 35. M. Aleksa, *FCC-hh Experiments Summary* @ FCC Week Berlin 2017

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Istituto Nazionale di Fisica Nucleare

UNIVERSITÀ DEGLI STUDI DI MILANO **Pp and ee Cross Section**

pp+ee interaction cross sections

INFN

Beijing, 4 September 2017

Linear collider detector needs

- Momentum resolution
 - Higgs recoil mass, smuon endpoint, Higgs coupling to muons
 - $ightarrow \sigma_{
 ho_{
 m T}}/p_{
 m T}^2 \sim 2 imes 10^{-5}{
 m GeV^{-1}}$ above 100 GeV
- Impact parameter resolution
 - c/b-tagging, Higgs branching ratios
 - $\rightarrow \sigma_{r\varphi} \sim a \oplus b/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu m$
 - $a = 5 \,\mu\text{m}, \ b = 10 15 \,\mu\text{m}$
- Jet energy resolution
 - Separation of W/Z/H di-jets
 - $ightarrow \sigma_{\it E}/\it E\sim 3.5\%$ for jets at 50-1000 GeV
- Angular coverage
 - Very forward electron and photon tagging
 - \rightarrow Down to $\theta = 10 \text{ mrad } (\eta = 5.3)$
- Requirements from beam structure and beam-induced background
- $\rightarrow\,$ Note: Ongoing study to re-define needs for precision measurements

Eva Sicking @ TIPP2017

18 / 51

Energy reach \rightarrow physics programmes

Eva Sicking @ TIPP2017

• Physics programmes focus on precision measurements of

- FCC-ee: Z, W, Higgs, top
- CEPC: Higgs (Z, W under discussion)
- ILC: Higgs, top, direct high-mass BSM searches
- CLIC: Higgs, top, direct high-mass BSM searches

17 / 51

FCC-ee and CepC parameter lists

	Z	W	н	tt	Parameters for CEPC double ring for CDR Goal					
Circumference [km]	97.750				(wangdou20170426-100km 2mmßv)					
Bending radius [km]	10.747					Pre-CDR	Higgs	w	7	
Beam energy [GeV]	45.6	80	120	175	Number of IPs	2	2	2		- ?
Beam current [mA]	1390	147	29	6.4	Energy (GeV)	120	120	80	45.5	
Bunches / boom	18800	2000	275	45	Circumference (km)	54	100	100	100	
	18800	2000	375	45	SR loss/turn (GeV)	3.1	1.67	0.33	0.034	
Bunch spacing [hs]	15	150	455	6000	Half crossing angle (mrad)	0	16.5	16.5	10	5.5
Bunch population [10 ¹¹]	1.5	1.5	1.6	2.9	Piwinski angle	0	3.19	5.69	4.29	11.77
Horizontal emittance ε [nm]	0.267	0.26	0.61	1.33, 2.03	N_e /bunch (10 ¹¹)	3.79	0.968	0.365	0.455	0.307
Vertical emittance ε [pm]	1.0	1.0	1.2	2.66, 3.1	Bunch number Beam current (mA)	50	412	97.1	465.8	408.7
Momentum comp. [10 ⁻⁶]	14.79	7.31	7.31	7.31	SR power /beam (MW)	51.7	32	32	16.1	14
Arc sextupole families	208	292	292	292	Bending radius (km)	6.1	11	11	11	11
Betatron function at IP					Momentum compaction (10 ⁻⁵)	3.4	1.14	1.14	4.49	1.14
- Horizontal β* [m]	0.15	0.20	0.5	1	$\beta_{IP} x/y (m)$	0.8/0.0012	0.171/0.002	0.171 /0.002	0.16/0.002	0.171/0.00
- Vertical β* [mm]	0.8	1	1.2	2	Emittance x/y (nm)	6.12/0.018	1.31/0.004	0.57/0.0017	1.48/0.0078	0.18/0.003
Horizontal beam size at IP σ^* [µm]	6.3	7.2	17	45	Transverse σ_{IP} (um)	69.97/0.15	15.0/0.089	9.9/0.059	15.4/0.125	5.6/0.086
Vertical beam size at IP σ^* [nm]	28	32	38	79	$\xi/\xi/IP$	0.118/0.083	0.013/0.083	0.0055/0.062	0.008/0.054	0.006/0.05
Free length to IP /* [m]			2.2		KF Phase (degree)	153.0	128	0.41	165.3	136.2
Solenoid field at IP [T]	2				$f_{r=0}$ (MHz) (harmonic)	650	4.1 650	650 (217800)	650 (217800)	
Full crossing angle at IP [mrad]	30				Nature σ (mm)	2.14	2.72	3.37	3.97	3.83
			50		Total σ_{z} (mm)	2.65	2.9	3.4	4.0	4.0
- Synchrotron radiation	0.038	0.066	0.10	0 145	HOM power/cavity (kw)	3.6 (5cell)	0.41(2cell)	0.36(2cell)	1.99(2cell)	0.12(2cell
- Total (including BS)	0.130	0.153	0.10	0.194	Energy spread (%)	0.13	0.098	0.065	0.037	
Bunch length [mm]					Energy acceptance (%)	2	1.5			
- Synchrotron radiation	35	3 27	31	2.4	Energy acceptance by RF (%)	6	2.1	1.1	1.1	0.68
- Total	11.2	7.65	4.4	3.3	n_{γ}	0.23	0.26	0.15	0.12	0.22
Energy loss / turn [GeV]	0.0356	0.34	1.71	7.7	Life time due to	47	52			
SR power / beam [MW]	50				beamstrahlung_cal (minute)	0.69	0.07	0.02	0.00	0.00
	0.10	0.44	2.0	9.5	F (nour glass) I /IP (10 ³⁴ cm ⁻² s ⁻¹)	0.68	0.96	0.98	0.96	0.99
	400			9.5		2.04	2.0	5.15	11.9	1.1
	1281 225 70 22			22	-					
	1201	235	70	23	-					
Energy acceptance RF / DA [%]	1.9,	1.9,	2.4,	5.3, 2.5 (2.0)	-					
Synchrotron tune Q₅	-0.025	-0.023	-0.036	-0.069	_					
Polarization time τ_p [min]	15040	905	119	18						
Interaction region length L _i [mm]	0.42	1.00	1.45	1.85						
Hourglass factor H (Li)	0.95	0.95	0.87	0.85	1					
Luminosity/IP for 2IPs [10 ³⁴ cm ⁻² s ⁻¹]	215	31.0	7.9	1.5	1					
Beam-beam parameter					1					
- Horizontal	0.004	0.007	0.033	0.092						
- Vertical	0.134	0.126	0.141	0.150						
Beam lifetime rad Bhabha, BS [min]	72	54	42	47, 70 (12)	1					

UNIVERSITÀ DEGLI STUDI DI MILANO

INFN

Experimental conditions

• Hadron colliders

- inelastic p-p cross-section 100—120 mb
- luminosity 7—30 ×10³⁴ cm⁻²s⁻¹
- pileup 200—1000 interactions in 25 ns
- radiation hardness

DEGLI STUE DI MILANO

- Lepton colliders Emphasis on high precision, even at low p_T (for LHC standards)
 - cross section: 30 nb (Z peak) 100 fb (high energy processes like ZH, tt)
 - luminosity: 1—20 ×10³⁴ cm⁻²s⁻¹

$$\sigma_{d_0} = 5 \oplus \frac{10 - 15}{p[\text{GeV}]\sin^{3/2}\theta} \ \mu\text{m}$$

$$\sigma_{1/p} = 2 - 5 \times 10^{-5} \text{GeV}^{-1}$$

$$\frac{\sigma_E}{E} = 3 - 4\% \text{ at } \sim 40 \text{ GeV}$$

UNIVERSITÀ DEGLI STUDI DI MILANO HL-LHC Trackers Upgrade

High particle flux:

- Full Silicon Trackers
- extend pixel layer E
- reduce pixel size
- Extended coverage up to |η|=4

INFN

Beijing, 4 September 2017

A. Andreazza - Detector Develoments

Ref. #

p_T modules: PS module

- One silicon strip sensor (PS-s) and one silicon macro pixel sensor (PS-p) stacked [pic. #1, #2]
 - AC-coupled PS-s: 2.4 cm x 100 µm
 - DC-coupled PS-p: 1.5 mm x 100 µm
- Front-end electronics:
 - PS-s readout → Short Strip ASIC (SSA)
 - PS-p readout → Macro Pixel ASIC (MPA)
 - Bump bonded to PS-p
 - Performs hit correlation
 - Cooling via carbon fibre reinforced polymer (CFRP) base plate [pic. #5]
 - Concentrator ASIC (CIC) [pic. #10]
 - Buffer, aggregate and format data
 - DC/DC converter [pic. #8]
 - Low-power gigabit data transceiver (LpGBT) [pic. #7]

Radiation issue: Initial acceptor removal

This term indicates the "removal" of the initially present p-doping. For UFSD this is particularly problematic as it removes the gain layer

Irradiation -> Defects -> Boron becomes interstitial

The boron doping is still there, only it has been moves into a different position and it does not contribute to the doping profile, it is inactive

Depleted Monolithic Active Pixels DEGLI STUDI

UNIVERSITÀ

DI MILANO

INFN

GEM-MM developments for CepC

Test of the new module

• Test with GEM-MM module

UNIVERSITÀ DEGLI STUDI

DI MILANO

INFN

- New assembled module
- Active area: 100mm × 100mm
- **A** X-tube ray and 55Fe source
- **Bulk-Micromegas from Saclay**
- Standard GEM from CERN
- Additional UV light device
- Avalanche gap of MM:128μm
- □ Transfer gap: 2mm
- Drift length:2mm~200mm
- Mesh: 400LPI

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

Beijing, 4 September 2017

Why High Granularity Calorimeter (HGCAL) in HL-LHC

* Important role of the forward calorimeter for physics at the HL-HLC

à

* Current CMS calorimeters will suffer radiation damage by the end of LHC running

* Detector upgrade important to maintain excellent performance in the harsh HL-LHC

INFN UNIVERSITÀ DEGLI STUDI DI MILANO

CMS HGCal for HL-LHC

UNIVERSITÀ DEGLI STUDI DI MILANO PP and ee Cross Section

• ee interaction cross sections

ÍNFŃ

