

First Dark-Matter Search Results from XEN ON 1T arXiv:1705.06655

€± ±

VE TVO

.

++++

Columbia University

09/03/2017 PANIC2017

Direct Search for WIMPs

Fei Gao (Columbia)

Dual phase xenon TPC

XENON World

IGW Photos

Fei Gao (Columbia)

Laboratori Nazionali del Gran Sasso (LNGS), Italy

XENON1T

Phases of the XENON program

XENON10

XENON100

XENON1T / XENONnT

2005-2007 15 cm drift TPC – 25 kg

Achieved (2007) $\sigma_{SI} = 8.8 \text{ x } 10^{-44} \text{ cm}^2$

2008-2016 30 cm drift TPC – 161 kg

Achieved (2016) $\sigma_{SI} = 1.1 \text{ x } 10^{-45} \text{ cm}^2$

2013-2018 / 2019-2023 100 cm / 144 cm drift TPC - 3200 kg / ~8000 kg

Projected (2018) / Projected (2023) $\sigma_{SI} = 1.6 \text{ x } 10^{-47} \text{ cm}^2 \text{ / } \sigma_{SI} = 1.6 \text{ x } 10^{-48} \text{ cm}^2$

Fei Gao (Columbia)

XENON1T: All Systems

arXiv:1708.07051

Fei Gao (Columbia)

Cherenkov Muon Veto

- Active shield against muons
- 84 high-QE 8" Hamamatsu R5912
 PMTs
- Trigger efficiency > 99.5% for muons in water tank
- Can suppress cosmogenic neutron background to < 0.01 events/ton/year
- No coincidences with TPC found in this science run

Fei Gao (Columbia)

320 280

240 200 थ्र

160 g

120 80

Time Projection Chamber

<u>Eur. Phys. J. C 75, no. 11, 546 (2015)</u>

Fei Gao (Columbia)

XENON1T: First Results @ PANIC2017

Liquid Xenon

Detector Stability

- LXe temperature stable at -96.07 °C, RMS 0.04 °C
- GXe pressure stable at 1.934 bar, RMS 0.001 bar

Fei Gao (Columbia)

Xe Purification

Goal: remove electronegative impurities below 1 ppb (O2 equivalent) in the Xe gas

Performance: evolution of e-lifetime, monitored regularly with ERs calibration sources. Current value approaching the max drift time of the LXeTPC.

Fei Gao (Columbia)

arXiv:1708.07051

Energy response

 $E = (n_{ph} + n_e) \cdot W = \left(\frac{S1}{g1} + \frac{S2}{g2}\right) \cdot W$

- Excellent linearity with electronic recoil energy from 40 keV to 2.2 MeV
- g1 = 0.144 ± 0.007 (sys) PE/ photon corresponds to a photon detection efficiency of 12.5 ± 0.6% (taking into account double PE emission)
 - Assumptions of <u>past MC</u> <u>sensitivity</u> projected 12.1%.
- g2: the amplification of charge signal corresponds to near full extraction efficiency

Fei Gao (Columbia)

Background budget

Online Kr distillation

Fei Gao (Columbia)

- This talk highlights the analysis of the first science run (SR0)
- We continue to take data after the earthquake and analyzing SR1 now

The ER and NR Models

Bottom PMTs

from tuned models

JCAP 1604 no. 4, 027 (2016)

Fei Gao (Columbia)

G d

G d

Cathode mesh

Liquid Xenon

16

statistical

inference

or models

simulation and

real data

Fei Gao (Columbia)

XENON1T: First Results @ PANIC2017

Efficiencies

- Detection efficiency dominated by 3-fold coincidence requirement
 - Estimated via novel waveform simulation including systematic uncertainties
- Selection efficiencies estimated from control samples or simulation
- Search region defined within 3-70 PE in cS1

Background model

- ER and NR spectral shapes derived from models fitted to calibration data
- Other background expectations are data-driven, derived from control samples

arXiv:1705.06655

Background & Signal Rates	Total	Reference
Electronic recoils (ER)	62 ± 8	0.26 (+0.11)(-0.07)
Radiogenic neutrons (n)	0.05 ± 0.01	0.02
CNNS (v)	0.02	0.01
Accidental coincidences (acc)	0.22 ± 0.01	0.06
Wall leakage (<i>wall</i>)	0.5 ± 0.3	0.01
Anomalous (<i>anom</i>)	0.09 (+0.12)(-0.06)	0.01 ± 0.01
Total background	63 ± 8	0.36 (+0.11)(-0.07)

Fei Gao (Columbia)

- Extended unbinned profile likelihood analysis
- Most significant ER & NR shape parameters included from cal. fits
- Normalization uncertainties for all components
- Safeguard to protect against spurious mis-modeling of background

Fei Gao (Columbia)

XENON1T Results

start XENONnT in early 2019

Fei Gao (Columbia)

Summary

- First multi-ton-scale
 LXe detector in
 operation for dark
 matter search!
- Great discovery potential in XENON1T and XENONnT
- Stay tuned!

