

Measurements of J/ ψ production in p+p and p+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the STAR experiment

Zhen Liu

University of Science and Technology of China For the STAR collaboration

PANIC 2017 1-5 September, IHEP, Beijing, China

• **Color-screening:** quark-antiquark potential is screened by surrounding partons, leading to dissociation
T. Matsui and H. Satz, PLB 178 (1986) 416

J/ψ suppression was proposed as a proof of QGP formation

Ferreiro et al., PRC 81(2010) 064911 Eskola et al., Eur.Phys.J. C9 (1999) 61-68 Eskola. et al., JHEP 0807 (2008) 102 Eskola et al., JHEP 0904 (2009) 065 De Florian et al., PRD69 (2004) 074028

Shadowing R_G^{Pb}

However

- Cold nuclear matter effects also play an important role
 - Nuclear PDF (nPDF) effect
 - Nuclear absorption effect
 - Co-mover effect
- Quarkonium production mechanism in elementary collisions is not fully understood

- Measurements of quarkonium polarization provide further constraints on production models
 - Competing theoretical approaches predict similar production cross-sections, but different polarizations

• J/ ψ polarization can be analyzed via the angular distribution of the decayed positively charged leptons, which can be expressed as:

$$W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\varphi}\sin^2\theta\cos^2\varphi + \lambda_{\theta\varphi}\sin^2\theta\cos\varphi)$$

- θ polar angle between momentum of a positive lepton in the J/ ψ rest frame and the polarization axis z
- φ corresponding azimuthal angle
 - Polarization axis z
 - Helicity (HX) frame: along the J/ψ momentum in the center-of-mass of the colliding beams
 - **Collins-Soper (CS) frame:** bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ψ rest frame

• Mid-rapidity detector: $|\eta| < 1, 0 < \varphi < 2\pi$

- TPC: measure momentum and energy loss
- **TOF**: measure particle's time of flight. Extend PID to higher p_{T.}
- BEMC: trigger on and identify electrons
- > MTD (45% in φ , $|\eta| < 0.5$) : trigger on and identify muons
 - precise timing measurement $(\sigma \sim 100 ps)$
 - spatial resolution (~1cm)
 - reduced Bremsstrahlung radiation compared to electrons

CGC+NRQCD, Ma & Venugopalan, PRL 113 (2014) 192301 • NLO+NRQCD, Shao et al., JHEP 05 (2015) 103 ICEM, Ma & Vogt, PRD 94 (2016) 114029

- Inclusive J/ ψ cross section is measured for $0 < p_T < 14 \text{ GeV/c}$
- CGC+NRQCD together with NLO NRQCD (prompt J/ ψ) can qualitatively describe data in the full p_T range within uncertainties
 - There seems tension towards very low p_T

Improved CEM model (direct J/ ψ) describes data well at low p_T

- Data are above ICEM calculation at $3.5 < p_T < 12 \text{ GeV/c}$
- B-hadron feed-down needs to be taken into account

- First inclusive J/ ψ polarization measurement via the dimuon decay channel in both HX and CS frames in 200 GeV p+p collisions at RHIC
- λ_{θ} and λ_{φ} parameters are consistent with 0 in HX and CS frames

Frame invariant quantity:

$$\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

- Any arbitrary choice of the experimental observation frame will give the same value of this quantity
- Good cross-check on measurements performed in different frames

• λ_{inv} as a function of p_T are consistent between HX and CS frames

J/ ψ polarization: dimuon vs. dielectron

- Consistent results from the two decay channels in overlapping region
 - The dimuon results have different acceptance, efficiency and systematics compared to dielectron results
- The λ_{θ} parameters are consistent with 0 at $0 < p_T < 8 \text{ GeV/c}$.

STAR: Phys.Lett. B739 (2014) 180 PHENIX: Phys. Rev. D 82, 012001 (2010)

- Newly measured λ_{θ} parameters using 2012 and 2015 data are consistent with previous publication with 2009 data
- But the overall trend seems a bit different:
 - Current data are compatible with 0 without strong p_T dependence, while the published data seem to indicate a decreasing trend towards high p_T

- First J/ ψ R_{pAu} measurement at RHIC
- R_{pAu} is consistent with unity at high p_T and is less than unity at low p_T

- R_{pAu} is consistent with R_{dAu} within uncertainties
 - There seems to be tension at 3.5-5 GeV/c with a significance of 1.4σ
- Suggest similar CNM effects in these collision systems

• Model calculations with only nPDF effect can touch the upper limit of data within uncertainties

- Model calculations with only nPDF effect can touch the upper limit of data within uncertainties
- Data favor a model calculation including an additional nuclear absorption effect on top of the nPDF effect

• p+p collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Inclusive J/ ψ cross section is measured for 0 < p_T < 14 GeV/c
 - Can be described by CGC+NRQCD and NLO NRQCD (prompt J/ψ) in the full p_T range within uncertainties
 - ICEM (direct J/ ψ) describes data at low p_T while underestimates data at $3.5 < p_T < 12 \text{ GeV/c}$
- First measurements of J/ ψ polarization in the HX and CS frames from the dimuon channel for 0 < p_T < 5 GeV/c
 - Both λ_{θ} and λ_{φ} parameters are consistent with 0 in the both frames
 - The λ_{θ} parameter in the HX frame is consistent with the dielectron result $(2 < p_T < 8 \text{ GeV/c})$ in the overlapping region
- p+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - J/ ψ R_{pAu} ~ R_{dAu} : suggests similar CNM effects between p+Au and d+Au collisions
 - J/ ψ R_{pAu} favors additional nuclear absorption effect on top of nPDF effect
- Outlook: the measurement of J/ ψ polarization parameters in p+Au collisions is underway

Back Up

17

yield measured in p+Au

collisions at RHIC

First inclusive J/ψ invariant

STAR Inclusive J/ ψ cross section in p+Au collisions

ullet

HERA-B, EPJC49, 545 PHENIX mid y, PRD85 (2012) 092004 PHENIX forward y, arXiv:1609.06550 (Accepted by PRC) CDF, 1.8TeV, PRL79 (1997) 572 ICEM, Ma & Vogt, PRD 94 (2016) 114029

- Measured $\psi(2S)/J/\psi$ ratio in 200 GeV p+p collisions is consistent with world-wide data
- The ICEM model describes the increasing trend

• First $[\sigma_{\psi(2S)}/\sigma_{\psi(1S)}]_{pAu}/[\sigma_{\psi(2S)}/\sigma_{\psi(1S)}]_{pp}$ measurement at midrapidity at RHIC

$1.37 \pm 0.42(stat) \pm 0.19(sys)$

• J/ ψ polarization can be analyzed via the angular distribution of the decayed positively charged leptons, which can be expressed as:

$$W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\varphi}\sin^2\theta\cos^2\varphi + \lambda_{\theta\varphi}\sin^2\theta\cos\varphi)$$

- θ polar angle between momentum of a positive lepton in the J/ ψ rest frame and the polarization axis z
- $\boldsymbol{\varphi}$ corresponding azimuthal angle
- The angular distribution, integrated over

azimuthal angle: $W(\cos\theta) \propto 1 + \lambda_{\theta} \cos^2\theta$ polar angle:

$$W(\varphi) \propto 1 + \frac{2\lambda_{\varphi}}{3 + \lambda_{\theta}} cos 2\varphi$$

• J/ ψ polarization can be analyzed via the angular distribution of the decayed positively charged leptons, which can be expressed as:

$$W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^{\frac{m}{2}+1} + \lambda_{\varphi}\sin^{2}\theta\cos^{2}\varphi + \lambda_{\theta\varphi}\sin^{2}\theta\cos\varphi)$$

Frame invariant quantity:

$$\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

- Any arbitrary choice of the experimental observation frame will give the same value of this quantity
- Good cross-check on measurements performed in different frames