Mixing and CPV in charm hadrons at LHCb

Wojciech Krzemień

On behalf of the LHCb collaboration

The 21st Particles and Nuclei International Conference Beijing 01.09 2017

Outline

- → Introduction
- F Mixing and CP studies in $~D^0 \rightarrow K^+\pi^-$ decays
- -> Search for direct CPV with $D^+_{(s)} \rightarrow \eta' \pi^+$ decay
- ${\boldsymbol{\twoheadrightarrow}} A_{\Gamma}$ measurements with $D^0 \,{\rightarrow}\, h^+ h^-$
- → Summary& Outlook

Flavour states are not eigenvectors of the full Hamiltonian

$$\frac{\partial}{\partial t}|\Phi>=H|\Phi>$$

Flavour states are not eigenvectors of the full Hamiltonian

$$\frac{\partial}{\partial t}|\Phi>=H|\Phi>$$

Mass eigenstates expressed as a superposition of flavour eigenstates :

$$|D_{1,2}
angle=p|\mathrm{D}^0
angle\pm q|\overline{\mathrm{D}}^0
angle$$
 $|p|^2+|q|^2=1$ *p, q* are complex

Flavour states are not eigenvectors of the full Hamiltonian

$$\frac{\partial}{\partial t}|\Phi>=H|\Phi>$$

Mass eigenstates expressed as a superposition of flavour eigenstates :

 $|D_{1,2}
angle=
ho|\mathrm{D}^0
angle\pm q|\overline{\mathrm{D}}^0
angle \qquad |
ho|^2+|q|^2=1 \qquad heta,\,q ext{ are complex}$

6

Probabilities of mixing:

 $Pr[P^{0} \rightarrow P^{0}] \sim e^{-\Gamma t} (cosh(y\Gamma t) + cos(x\Gamma t))$

 $Pr[P^{0} \rightarrow \overline{P}^{0}] \sim e^{-\Gamma t} |q/p|^{2} (\cosh(y\Gamma t) - \cos(x\Gamma t))$

Mixing parameters:

$$x = \frac{\Delta m}{\Gamma} \qquad \Delta \Gamma = \Gamma_1 - \Gamma_2$$
$$y = \frac{\Delta \Gamma}{2\Gamma} \qquad \Delta m = m_1 - m_2$$

CP violation and its types

C – charge conjugation (particle \rightarrow antiparticle) $\hat{C}|\vec{r}, t, q \rangle = e^{i\alpha_1}|\vec{r}, t, -q \rangle$ P – partity (spatial reflection) $\hat{P}|\vec{r}, t, q \rangle = e^{i\alpha_2}|-\vec{r}, t, q \rangle$

The CP discrete symmetry is broken if:

$$\lambda_{f} \equiv q/p \ \overline{A}_{\overline{f}} / A_{f} \neq 1$$

CP violation in decay

$$\Gamma(P^0 \to f) \neq \Gamma(\bar{P^0} \to \bar{f})$$

 $\overline{|\mathsf{A}_{\mathsf{f}}|} \neq 1$

- Depends on decay mode
- At least one amplitude with different strong and weak phases

CP violation and its types

C – charge conjugation (particle \rightarrow antiparticle) $\hat{C}|\vec{r}, t, q \rangle = e^{i\alpha_1}|\vec{r}, t, -q \rangle$ P – partity (spatial reflection) $\hat{P}|\vec{r}, t, q \rangle = e^{i\alpha_2}|-\vec{r}, t, q \rangle$

The CP discrete symmetry is broken if:

$$\lambda_{f} \equiv q/p \ \overline{A}_{\overline{f}} / A_{f} \neq 1$$

CP violation in decay

$$\Gamma(P^0 \to f) \neq \Gamma(\bar{P^0} \to \bar{f})$$

 $\overline{|A_{f}|} \neq 1$

 At least one amplitude with different strong and weak phases CP violation in mixing

$$\Gamma(P^0 \rightarrow \bar{P^0}) \neq \Gamma(\bar{P^0} \rightarrow P^0)$$

|q/p| ≠ 1

CP violation and its types

C – charge conjugation (particle \rightarrow antiparticle) $\hat{C}|\vec{r}, t, q \rangle = e^{i\alpha_1}|\vec{r}, t, -q \rangle$ P – partity (spatial reflection) $\hat{P}|\vec{r}, t, q \rangle = e^{i\alpha_2}|-\vec{r}, t, q \rangle$

The CP discrete symmetry is broken if:

$$\lambda_{f} \equiv q/p \ \overline{A}_{\overline{f}} / A_{f} \neq 1$$

CP violation in decay

$$\Gamma(P^0 \to f) \neq \Gamma(\bar{P^0} \to \bar{f})$$

 $\overline{|\mathsf{A}_{\mathsf{f}}|} \neq 1$

- Depends on decay mode
- At least one amplitude with different strong and weak phases

CP violation in mixing

$$\Gamma(P^0 \rightarrow \bar{P^0}) \neq \Gamma(\bar{P^0} \rightarrow P^0)$$

|q/p**|** ≠ 1

CP violation in interference between mixing and decay

$$\Gamma(P^0 \rightarrow \bar{P^0} \rightarrow f_{CP}) \neq$$

$$\Gamma(\bar{P^0} \rightarrow P^0 \rightarrow f_{CP})$$

Relative phase between q/p and $\overline{A}_{\overline{f}}$ /A_f non-zero

- Not depends on decay mode
- only for neutral mesons

Standard Model predictions (PDG2016):

Predictions for mixing very imprecise

x, y: O(10⁻²)- O(10⁻⁷)

long-range contributions dominates - hard to calculate

→ Almost no CPV effects expected ~ O(10⁻³)

Standard Model predictions (PDG2016): %) CPV allowed Predictions for mixing very imprecise CKM 2016 *x*, *y*: O(10⁻²)- O(10⁻⁷) 0.8 d,s,bΚ 0.6 D^0 0.4 \overline{D} D 0.2 $\overline{d},\overline{s},\overline{b}$ 0 long-range contributions dominates – hard to calculate -0.2 → Almost no CPV effects expected ~ O(10⁻³) -0.4 4 σ 5σ **Experimental status: _0.6** -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.2

- Mixing established (~ 11 σ effect)
 - First evidence Babar, Belle, CDF: PRL 98 (2007) 211802, PRL 98 (2007) 211803, PRL 100 (2008) 121802
 - → Recent LHCb measurement: PRL 113 (2013) 231802
- → No CPV observed so far

x (%)

- → First evidence Babar, Belle, CDF: PRL 98 (2007) 211802, PRL 98 (2007) 211803, PRL 100 (2008) 121802
- → Recent LHCb measurement: PRL 113 (2013) 231802
- No CPV observed so far

Large Hadron Collider Beauty detector

- Single-arm forward spectrometer covering range $2 < \eta < 5$ (10 < θ <300 mrad)
- → Momentum resolution $\Delta p/p = 0.5 \%$ @ 5 GeV/c to 1% @ 200 GeV/c
- Impact parameter resolution: 20 μ m from high p_T tracks, decay lifetime ~45 fs W. Krzemień, PANIC 2017

Charm in LHCb

LHCb-CONF-2016-005

→ Charm produced copiously in the pp collisions: $\sigma(pp \rightarrow cc) \sim 1419 \, \mu b @ 7 \, TeV$

Nucl.Phys.B871(2016)1

 $\sigma(pp \rightarrow c\overline{c}) \sim 2940 \ \mu b @ 13 \ TeV$

JHEP03(2016) 159

→ In Run I 2011-2012 (L = 3 fb⁻¹) produced:
 ~5 x 10¹² D⁰,

~2 x 10¹² D*+

~30 x larger collected statistics than previous experiments

In Run II: higher cross-sections due to higher energy and improved trigger

Assuming small values of x and y parameters the ratio R(t) = WS/RS(t):

$$R(t)^{\pm} = R_D^{\pm} + \sqrt{R_D^{\pm}} y^{\prime\pm} \left(\frac{t}{\tau}\right) + \frac{(x^{\prime\pm})^2 + (y^{\prime\pm})^2}{4} \left(\frac{t}{\tau}\right)^2$$

 $R_{D}^{+} = |\mathcal{A}_{\overline{f}}/\mathcal{A}_{f}|^{2} \qquad R_{D}^{-} = |\overline{\mathcal{A}}_{f}/\overline{\mathcal{A}}_{\overline{f}}|^{2} \qquad \Rightarrow x' = x \cos(\delta) + y \sin(\delta)$ $\Rightarrow y' = y \cos(\delta) + x \sin(\delta)$

Mixing and CP studies in $D^0 \rightarrow K^+\pi^-$ decays $A_f \cap CF \longrightarrow K^-\pi^+$ $mixing \longrightarrow D^0 \longrightarrow K^+\pi^$ $mixing \longrightarrow D^0 \longrightarrow K^+\pi^$ $mixing \longrightarrow CF \longrightarrow T^+$ $Right Sign \longrightarrow Wrong Sign$ Assuming small values of x and y parameters the ratio R(t) = WS/RS (t):

 $x_{0} = x_{0} = x_{0}$

$$R(t)^{\pm} = R_D^{\pm} + \sqrt{R_D^{\pm}} y^{\prime\pm} \left(\frac{t}{\tau}\right) + \frac{(x^{\prime\pm})^2 + (y^{\prime\pm})^2}{4} \left(\frac{t}{\tau}\right)^2$$

$$R_{D}^{+} = |\mathcal{A}_{\overline{f}}/\mathcal{A}_{f}|^{2} \qquad R_{D}^{-} = |\overline{\mathcal{A}}_{f}/\overline{\mathcal{A}}_{\overline{f}}|^{2} \qquad \stackrel{*}{\Rightarrow} x' = x \cos(\delta) + y \sin(\delta)$$

$$\Rightarrow y' = y \cos(\delta) + x \sin(\delta)$$

If $R^{+}(t) \neq R^{-}(t)$ then CP is violated:

→ $R^+_{D} \neq R^-_{D}$ direct CPV

→ $x'^+ \neq x'^-$ or $y'^+ \neq y'^-$ indirect CPV

SM expectation for CPV in mixing $\sim O(10^{-3})$

Mixing and CP studies in $~D^{0} \rightarrow K^{+}\pi^{-}~decays$

- → Run I data sample 2011 and 2012 (3 fb⁻¹ pp @7 TeV and @8 TeV)
- Time-dependent asymmetry R(t)
- → Double-tagged data : $\overline{B} \rightarrow D^{*+}\mu^{-}X$, $D^{*+} \rightarrow D^{0}\pi^{+}$
- → Fit D^{*} mass to extract D⁰ in five time bins
- Correct for time-dependent detector effects

LHCb

 D_0

Mixing and CP studies in $~D^0 \to K^+\pi^-~decays$

- → Run I data sample 2011 and 2012 (3 fb⁻¹ pp @7 TeV and @8 TeV)
- Time-dependent asymmetry R(t)
- → Double-tagged data : $\overline{B} \rightarrow D^{*+}\mu^{-}X$, $D^{*+} \rightarrow D^{0}\pi^{+}$
- → Fit D^{*} mass to extract D⁰ in five time bins
- Correct for time-dependent detector effects
- Three fit scenario considered:
 - No CPV allowed
 - → No direct CPV allowed
 - All CPV allowed

Consistent with non-CPV hypothesis

Mixing and CP studies in $\ D^0 \to K^+\pi^-$ decays

- Combined fit using to independent data samples:
 - → Double-tagged (DT) sample
 - → Prompt sample (**PRL 111 (2013) 251801**)
- Complementary decay-time coverage and higher purity for DT
- → Precision improved by 10-20 % (DT sample 2.5% of signal)

	All CPV allowed	
$R_D^+[10^{-3}]$	3.474 ± 0.081	3.545 ± 0.095
$(x'^+)^2[10^{-4}]$	0.11 ± 0.65	0.49 ± 0.70
y'+[10 ⁻³]	5.97 ± 1.25	5.1 ± 1.4
$R_D^-[10^{-3}]$	3.591 ± 0.081	3.591 ± 0.090
$(x'^{-})^{2}[10^{-4}]$	0.61 ± 0.61	0.60 ± 0.68
$y' = [10^{-3}]$	4.50 ± 1.21	4.5 ± 1.4
χ^2/ndf	95.0/108	85.9/98

Consistent with non-CPV hypothesis

Phys. Lett. B 771 (2017) 21

- Search for direct CPV WILLE (s) (s) Run I data sample 2011 and 2012 (3 fb⁻¹ pp @7 TeV $_{000}^{000}$ 600 and @8 TeV) construction of $\eta' \rightarrow \pi^{-}\pi^{+}\gamma$

 - Never measured before at hadron colliders

Search for direct CPV with D⁺_(s)

- Search ion uncest

 → Run I data sample 2011 and 2012 (3 fb⁻¹ pp @7 TeV

 > 6000
- → Reconstruction of $\eta' \rightarrow \pi^- \pi^+ \gamma$
- → 63 x 10³ D[±], 152 x 10³ D[±]_(s)
- Never measured before at hadron colliders
- Measured with respect to the control channels to eliminate the detector and production asymmetries

$$\mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) \approx \Delta \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) + \mathcal{A}_{CP}(D^{\pm} \to K_{s}^{0} \pi^{\pm})$$
$$\mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) \approx \Delta \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) + \mathcal{A}_{CP}(D_{s}^{\pm} \to \phi \pi^{\pm})$$

 A_{CP} known from previous measurements at level O(10⁻³): Belle: PRL 102 (2012) 021601, erratum: PRL 102 (2012) 119903 D0: PRL 112 (2014) 111804

Search for direct CPV with $D^+_{(s)} \rightarrow \eta' \pi^+$ deca

- → Run I data sample 2011 and 2012 (3 fb⁻¹ pp @7 TeV and @8 TeV)
- → Reconstruction of η' → $\pi^-\pi^+\gamma$
- → 63 x 10³ D[±], 152 x 10³ D[±]_(s)
- Never measured before at hadron colliders
- → Measured with respect to the control channels to eliminate the detector and production asymmetries

$$\mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) \approx \Delta \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) + \mathcal{A}_{CP}(D^{\pm} \to K_{s}^{0} \pi^{\pm})$$
$$\mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) \approx \Delta \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) + \mathcal{A}_{CP}(D_{s}^{\pm} \to \phi \pi^{\pm})$$

 $\begin{aligned} A_{\rm CP}(D \to \eta' \pi^+) &= (-0.61 \pm 0.72 \pm 0.53 \pm 0.12)\%\\ A_{\rm CP}(D_{\rm s} \to \eta' \pi^+) &= (-0.82 \pm 0.36 \pm 0.22 \pm 0.27)\% \end{aligned}$

- The most precise measurement
- → Consistent with CP symmetry invariance W. Krzemień, PANIC 2017

Phys. Rev. Lett. 118 (2017) 261803

$A_{\Gamma} \ measurements \ with \ D^{0} \rightarrow h^{+}h^{-}$

Measurement of indirect asymmetry of effective lifetimes

$$A_{\Gamma}\simeq -A_{CP}^{indir}$$

Assuming mixing parameters *x*,*y* are small time-dependent asymmetry to CP eigenstates:

$$A(t) \equiv \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} \simeq A_{CP}^{dir} - A_{\Gamma} \frac{t}{\tau_{D}} \checkmark$$
 lifetime

 $f = \pi^+\pi^-$ or $\mathrm{K^+K^-}$

 $\Delta v \alpha r \alpha \alpha D^0$

Phys. Rev. Lett. 118 (2017) 261803

$A_{\Gamma} \ measurements \ with \ D^{0} \rightarrow h^{+}h^{-}$

Measurement of indirect asymmetry of effective lifetimes

$$A_{\Gamma}\simeq -A_{CP}^{indir}$$

Assuming mixing parameters *x*,*y* are small time-dependent asymmetry to CP eigenstates:

$$A(t) \equiv \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} \simeq A_{CP}^{dir} - A_{\Gamma} \frac{t}{\tau_{D}}$$
 lifetime

 $f = \pi^+ \pi^-$ or $K^+ K^-$

Neglecting sub-leading amplitudes:

 $A_{CP}^{dir} = 0$

 A_{r} becomes universal

(not depended on decay mode)

average D⁰

Phys. Rev. Lett. 118 (2017) 261803

$A_{\Gamma} \ measurements \ with \ D^{0} \rightarrow h^{+}h^{-}$

Measurement of indirect asymmetry of effective lifetimes

$$A_{\Gamma}\simeq -A_{CP}^{indir}$$

Assuming mixing parameters *x*,*y* are small time-dependent asymmetry to CP eigenstates:

$$A(t) \equiv \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} \simeq A_{CP}^{dir} - A_{\Gamma} \frac{t}{\tau_{D}} \checkmark \qquad \text{lifetime}$$

 $f = \pi^+ \pi^-$ or $K^+ K^-$

Neglecting sub-leading amplitudes:

 $A_{CP}^{dir} = 0$

A_Γ becomes universal
 (not depended on decay mode)

If no CPV asymmetry in mixing:

 $A_{\Gamma} = -x \sin \phi \rightarrow |A_{\Gamma}| < |x| \lesssim 5 \times 10^{-3}$ $\phi = \arg \left((q \overline{A}_f) / (p A_f) \right)$

W. Krzemień, PANIC 2017

average D^o

$A_{\Gamma} \ measurements \ with \ D^{0} \rightarrow h^{+}h^{-}$

- → Run I data sample 2011 and 2012 (3 fb⁻¹ pp @7 TeV and @8 TeV)
- → Prompt D⁰
- → Initial flavour based on the "soft" pion charge: $D^{*+} \rightarrow D^0 \pi^+$
- → High statistics control sample $D^0 \rightarrow K^-\pi^+$
- Two independent analyses (different approaches)

$A_{\Gamma} \ measurements \ with \ D^{0} \rightarrow h^{+}h^{-}$

$A_{\Gamma} \ measurements \ with \ D^{0} \rightarrow h^{+}h^{-}$

A_{Γ} measurements with $D^0 \rightarrow h^+h^-$

Assuming no direct CPV and combining two channels:

$$A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$$
$$\Delta A_{\Gamma} = (-0.76 \pm 0.66 \pm 0.04) \times 10^{-3}$$

Combining with muon-tagged statistically

independent sample $B \rightarrow D^0 \mu^- X$ (JHEP 04 (2015) 043)

$$A_{\Gamma} = (-0.29 \pm 0.28) \times 10^{-3}$$

Consistent with CP symmetry conservation. The most precise result to date W. Krzemień, PANIC 2017 32

\boldsymbol{A}_{Γ} measurements with $\boldsymbol{D}^{0} \rightarrow \boldsymbol{h}^{+}\boldsymbol{h}^{-}$

Summary and Outlook

- → Mixing and CP violation studies as precise tests of SM and probes of New Physics effects,
- → LHCb provided many results confirming SM predictions based on Run I 2011/2012 data (3 fb⁻¹),
- Charm mixing confirmed, no CP violation discovered so far,
- → Results mostly limited by statistics,
- → Run II in progress

	LHC era			HL-LHC era	
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)
ATLAS, CMS	25 fb⁻¹	100 fb ⁻¹	300 fb⁻¹	\rightarrow	3000 fb ⁻¹
LHCb	3 fb ^{−1}	8 fb⁻¹	25 fb⁻¹	50 fb⁻¹	*300 fb ⁻¹

* assumes a future LHCb upgrade to raise the instantaneous luminosity to 2 \times 10³⁴ cm⁻²

Thank you for your attention

$D^0 \rightarrow h^+ h^-$ decays - more details Phys. Rev. Lett. 118 (2017) 261803

- The high-statistics control sample of $D^0 K \rightarrow \pi$ (assumption: CPV effect below the sensitivity)
- D⁰ reconstruction asymmetries corrected using D⁰ D
 ⁰ yields in equally populated times bin.
- main source of systematic errors: peaking background from D⁰ coming from B decays.
- soft-pion detection asymmetries corrected by reweighting using 3-D distributions

37

LHCb Integrated Recorded Luminosity in pp, 2010-2017

Asymmetries relations

Observables:

$$A_{\Gamma} \equiv \frac{\tau(\overline{D}{}^{0} \rightarrow h^{+}h^{-}) - \tau(D^{0} \rightarrow h^{+}h^{-})}{\tau(\overline{D}{}^{0} \rightarrow h^{+}h^{-}) + \tau(D^{0} \rightarrow h^{+}h^{-})}$$

$$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

Theoretical params:

$$a_{CP}^{\text{dir}} \equiv \frac{|\mathcal{A}_{D^0 \to f}|^2 - |\mathcal{A}_{\overline{D}{}^0 \to f}|^2}{|\mathcal{A}_{D^0 \to f}|^2 + |\mathcal{A}_{\overline{D}{}^0 \to f}|^2}$$
$$a_{CP}^{\text{ind}} \equiv \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi \right]$$

Relations:

$$A_{\Gamma} = -a_{CP}^{\text{ind}} - a_{CP}^{\text{dir}} y_{CP}$$

$$\Delta A_{CP} = \Delta a_{CP}^{\text{dir}} \left(1 + y_{CP} \frac{\overline{\langle t \rangle}}{\tau} \right) + a_{CP}^{\text{ind}} \frac{\Delta \langle t \rangle}{\tau} + \overline{a_{CP}^{\text{dir}}} y_{CP} \frac{\Delta \langle t \rangle}{\tau}$$

$$\approx \Delta a_{CP}^{\text{dir}} \left(1 + y_{CP} \frac{\overline{\langle t \rangle}}{\tau} \right) + a_{CP}^{\text{ind}} \frac{\Delta \langle t \rangle}{\tau}.$$

40

Search for direct CPV with $D^+_{(s)} \rightarrow \eta' \pi^+$ decay

$$\mathcal{A}_{\text{raw}}(D_{(s)}^{\pm} \to f^{\pm}) = \frac{N(D_{(s)}^{+} \to f^{+}) - N(D_{(s)}^{-} \to f^{-})}{N(D_{(s)}^{+} \to f^{+}) + N(D_{(s)}^{-} \to f^{-})},$$

$$\mathcal{A}_{raw} \approx \mathcal{A}_{CP} + \mathcal{A}_{P} + \mathcal{A}_{D}$$

$$\begin{split} \Delta \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) &\equiv \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{CP}(D^{\pm} \to K_{s}^{0} \pi^{\pm}) \\ &= \mathcal{A}_{raw}(D^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{raw}(D^{\pm} \to K_{s}^{0} \pi^{\pm}) \\ &+ \mathcal{A}(\overline{K}^{0} - K^{0}), \\ \Delta \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) &\equiv \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{CP}(D_{s}^{\pm} \to \phi \pi^{\pm}) \\ &= \mathcal{A}_{raw}(D_{s}^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{raw}(D_{s}^{\pm} \to \phi \pi^{\pm}). \end{split}$$

→ Estimated by simulation, taking into account mixing, regeneration and CP violation $\sim (-0.08 \pm 0.01)$ %

Search for direct CPV with $D^+_{(s)} \rightarrow \eta' \pi^+$ decay

Main peaking background: $D_{(s)}^{\pm} \rightarrow \phi_{3\pi}\pi^{\pm}$

Table 1

Systematic uncertainties (absolute values in %) on ΔA_{CP} . The total systematic uncertainty is the sum in quadrature of the individual contributions.

Source	$\delta[\Delta \mathcal{A}_{CP}(D^{\pm})]$	$\delta[\Delta \mathcal{A}_{CP}(D_s^{\pm})]$
Non-prompt charm	0.03	0.03
Trigger	0.09	0.09
Background model	0.50	0.19
Fit procedure	0.08	0.04
Sideband subtraction	0.03	0.02
K ⁰ asymmetry	0.08	-
π^\pm detection asymmetry	0.06	0.01
$D_{(s)}^{\pm}$ production asymmetry	0.07	0.02
Total	0.53	0.22

Search for direct CPV with $D^{*}_{~(s)} \rightarrow \eta^{\prime}\pi^{*}$ decay

- 12 exclusive subsamples for each final state:
 - Collision energies
 - → Magnet polarity
 - → 3 Trigger selections
- In each subsample: 3x3 kinematic bins
 base on p_⊤ and eta of bachelor pion

Fig. 4. ΔA_{CP} results for (a) $D^{\pm} \rightarrow \eta' \pi^{\pm}$ and (b) $D_s^{\pm} \rightarrow \eta' \pi^{\pm}$ decays, as a function of pp centre-of-mass energy and trigger selection. Uncertainties are statistical only. A shaded band representing the 68.3% confidence intervals obtained from the weighted average over all the samples is shown to guide the eye.

Decay time resolution

Decay time resolution σ_t will dilute the measured oscillation amplitude

• The dilution factor: $D(\sigma_t) = e^{-rac{(\sigma_t \Delta m_s)^2}{2}}$

Resolution measured from data

- Combinations of $\mu^+\mu^-K^+K^-$ events
- Same selection as for B⁰_s apart for decay time cuts
- Mostly prompt events with true decay time of zero
- Effective decay time resolution σ_t = 45 fs

$$D(\sigma_t = 45 \,\mathrm{fs}) \approx 0.73$$

LHCb parameters

- LHC beam energy in pp collisions (\sqrt{s}): 7 and 8 TeV (2010-2012), 13 to 14 TeV (ongoing Run II)
- Collected integrated luminosity: 1 fb $^{-1}$ (2011), 2 fb $^{-1}$ (2012)
- Acceptance: 2 i η i 5
- data taking efficency ¿ 90 %
- trigger efficiency: 90 % for dimuon channels, 30% for multi-body hadronic final states
- track reco. efficiency: ¿96 % for long tracks
- Momentum resolution: $\frac{\Delta p}{p} = 0.5$ % for low momentum till 1% at 200 GeV/c
- ECAL resolution: $1\% + 10\% \overline{E[GeV]}$
- impact parameter resolution: 20 µm for high-pT tracks
- invariant mass resolution: 8 MeV/c² for B to J/Psi decays, 22 Mev/C for two-body B decays, 100 MeV/c² for Bsto phi photon
- decay time resolution: 45 fs for Bs tp J/Psi and Bs to Ds pi
- electron ID efficiecny: 90 % (5 % miss probability)
- kaon ID efficiecny: 95 % (5 % miss probability)
- muon ID efficiecny: 97 % (1-3 % miss probability)

LHCb parameters

- LHC beam energy in pp collisions (\sqrt{s}): 7 and 8 TeV (2010-2012), 13 to 14 TeV (ongoing Run II)
- Collected integrated luminosity: 1 fb $^{-1}$ (2011), 2 fb $^{-1}$ (2012)
- Acceptance: 2 i η i 5
- data taking efficency ¿ 90 %
- trigger efficiency: 90 % for dimuon channels, 30% for multi-body hadronic final states
- track reco. efficiency: ¿96 % for long tracks
- Momentum resolution: $\frac{\Delta p}{p} = 0.5$ % for low momentum till 1% at 200 GeV/c
- ECAL resolution: $1\% + 10\% \overline{E[GeV]}$
- impact parameter resolution: 20 µm for high-pT tracks
- invariant mass resolution: 8 MeV/c² for B to J/Psi decays, 22 Mev/C for two-body B decays, 100 MeV/c² for Bsto phi photon
- decay time resolution: 45 fs for Bs tp J/Psi and Bs to Ds pi
- electron ID efficiecny: 90 % (5 % miss probability)
- kaon ID efficiecny: 95 % (5 % miss probability)
- muon ID efficiecny: 97 % (1-3 % miss probability)