

Heavy flavour spectroscopy at LHCb

Ao XU on behalf of the LHCb collaboration

Tsinghua University

Particle and Nuclei International Conference 1-5 September 2017 Beijing, China

Outline

- Introduction
- Exotic hadrons (selected results)
 - Pentaquarks
 - Tetraquarks
- Conventional hadrons (selected results)
 - Five new narrow Ω_c^0 states
 - Doubly charmed baryon \mathcal{Z}_{cc}^{++}
- Summary and outlook

Heavy flavour spectroscopy

- Spectroscopy benefits better understanding of QCD
 - Test phenomenological models and lattice QCD methods
 - Heavy hadrons (containing *b* or *c* quarks) of great interest
- LHCb experiment: a unique and important lab. in the study of spectroscopy for both conventional and exotic hadrons
 - $X(3872), Z(4430), P_c(4380)^+, P_c(4450)^+ \dots$
 - $B^{**}, \Xi_b', \Xi_b^* \dots$

Heavy flavour spectroscopy at LHCb

LHCb detector

Data acquisition at LHCb

- Run1: 1.1 fb⁻¹ @ 7 TeV(2011), 2.1 fb⁻¹ @ 8 TeV(2012)
- Run2: 0.3 fb⁻¹ @ 13 TeV(2015), 1.7 fb⁻¹ @ 13 TeV(2016)

LHCb integrated luminosity in pp

Development of the instantaneous luminosity

Exotic hadrons

Pentaquarks at LHCb

- $P_c(4380)^+$ and $P_c(4450)^+$ observed in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays with 6-d amplitude analysis, and confirmed by model-independent analysis
- Evidence (3.1 σ) of the two pentaquarks candidates in $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

- Other channels
 - Observation of $\Xi_b^- \rightarrow J/\psi \Lambda K^-$: pentaquarks with open strangeness
 - Observation of $\Lambda_b^0 \rightarrow \chi_{c1,2} p K^-$ (in details)

PLB 772 (2017) 265-273

Observation of $\Lambda_b^0 \rightarrow \chi_{c1,2} p K^-$

- $P_c(4450)^+$ near the $\chi_{c1}p$ threshold
 - Test phenomenological models of pentaquarks
- Data sample: $3.0 \text{ fb}^{-1} pp$ collision data at 7 and 8 TeV
- Search for $\Lambda_b^0 \to \chi_{cJ} p K^-$, where χ_{cJ} reconstructed with $J/\psi\gamma$
 - $m(J/\psi\gamma)$ is constrained to $m_{\chi_{c1}}$
- $\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-) = (7.3 \pm 0.4 \pm 0.4 \pm 0.6^{+1.0}_{-0.6}) \times 10^{-5}$
- $\mathcal{B}(\Lambda_b^0 \to \chi_{c2} p K^-) = (7.5 \pm 0.4 \pm 0.4 \pm 0.6^{+1.0}_{-0.6}) \times 10^{-5}$

Useful for future investigation of the two observed pentaquark candidates: $P_c(4380)^+$ and $P_c(4450)^+$

Confusing $J/\psi\phi$ structures in $B^+ \rightarrow J/\psi\phi K^-$

• Evidence or observations of X(4140) from CDF, D0 and CMS

- Negative results from Belle, LHCb (0.37 fb^{-1}) and BABAR
- No amplitude analysis conducted in the above results

Observation of $J/\psi\phi$ structures

• Data sample: $3.0 \text{ fb}^{-1} pp$ collision data at 7 and 8 TeV

120

100

6(

20

4100

4200

4300

4400

- First full amplitude analysis of $B^+ \rightarrow J/\psi \phi K^-$
- Kaon excitations alone insufficient to describe data
- PRL118 (2017) 022003 PRD 95 (2017) 012002

LHCb

4700

700)

4800

 $m_{J/\psi\phi}$ [MeV]

 Width much larger
 Larger data samples required to resolve this issue

4500

4600

	Signif.	<i>M</i> ₀ [MeV]	Γ_0 [MeV]
X(4140)	8.4σ	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$
X(4274)	6.0σ	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56 \pm 11^{+8}_{-11}$
X(4500)	6.1σ	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$
X(4700)	5.6 <i>o</i>	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$

X(5568) reported by D0

• D0 reports a narrow structure at 5568 MeV in $B_s^0 \pi^{\pm}$ spectrum with $B_s^0 \rightarrow J/\psi \phi$, using 10.4 fb⁻¹ $p\bar{p}$ collision data

D0, PRL 117 022003 (2016)

- Significance: local 4.8σ and global 3.9σ
- $M_X = 5567.8 \pm 2.9^{+0.9}_{-1.9} \text{ MeV}$
- $\Gamma_X = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{ MeV}$
- $\rho^{\text{D0}} = (8.6 \pm 1.9 \pm 1.4)\%$
- Significance varies a lot with or w/o the cone cut $\sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$
- D0 also reports consistent results in $B_s^0 \pi^{\pm}$ spectrum with $B_s^0 \rightarrow \mu^+ D_s^- X$ Pos ICHEP2016 (2017) 589 11

X(5568) search at LHCb

- LHCb searches with 105,800 B_s^0 combined with π^{\pm}
 - No signal is observed with 19 times more B_s^0 than D0
 - Upper limits on $\rho^{\rm LHCb}$ set as function of mass corresponding to different width hypothesis
 - $\rho^{\text{LHCb}}[p_{\text{T}}(B_s^0) > 15 \text{ GeV}] < 0.02 @ 95\% \text{ C. L.}$

Conventional hadrons

Ω_c^0 baryons

- Limited knowledge of charmed baryons
- No excited Ω_c^0 states were observed before LHCb
- Mass of resonances above the $\Xi_c K$ threshold 2.96 GeV

- Data sample: $3.3 \text{ fb}^{-1} pp$ collision data at 7, 8 and 13 TeV
- Ξ_c^+ combined with a K^- from primary vertex
 - \mathcal{Z}_c^+ reconstructed with $pK^-\pi^+$
 - \mathcal{Z}_c^+ also combined with K^+ to form wrong-sign(WS) candidates
- Five narrow structures observed
 - No peak in WS sample
 - Steep rise near the threshold

PRL118 (2017) 182001

Heavy flavour spectroscopy at LHCb

- A binned χ^2 fit to $m(\Xi_c^+K^-)$ spectrum
 - Signal: relativistic Breit-Wigner functions convolved with experimental resolution
 - Background: empirical function from WS sample
 - Feed-down contributions $\Omega_c(X)^0 \to K^- \Xi_c^{\prime+}, \ \Xi_c^{\prime+} \to \Xi_c^+ \gamma$

PRL118 (2017) 182001

Resonance	Mass (MeV)	Γ (MeV)	
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	
$\Omega_c(3050)^0$	$3050.2\pm0.1\pm0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	
		$< 1.2\mathrm{MeV}, 95\%$ CL	
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	
$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9 \substack{+0.3 \\ -0.5}$	$1.1\pm0.8\pm0.4$	
_		$<2.6{\rm MeV},95\%$ CL	
$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	
$\Omega_c(3066)^0_{ m fd}$			
$\Omega_c(3090)^0_{\mathrm{fd}}$	Fit improves by including		
$\Omega_c(3119)^0_{\mathrm{fd}}$	a broad structure in the		
	3188 MeV mass region		
		-	

- Quantum numbers to be determined through
 - Possible three-body decays or decays of heavy baryons

PRL118 (2017) 182001

Heavy flavour spectroscopy at LHCb

The doubly charmed baryons

- Two SU(4) 20-plets containing SU(3) triplets
 - $\Xi_{cc}^+(ccd), \Xi_{cc}^{++}(ccu), \Omega_{cc}^+(ccs)$

- Mass predictions (see backup for ref.)
 - $m_{\Xi_{cc}^+} \simeq m_{\Xi_{cc}^{++}} \approx 3600 \pm 100 \, {\rm MeV}/c^2$
 - Mass difference only a few MeV/c^2
- Lifetime predictions (see backup for ref.)
 - $\tau_{\Xi_{cc}^{++}}(\sim 200 700 \text{ fs}) > \tau_{\Xi_{cc}^{+}}(\sim 50 250 \text{ fs})$

Previous experimental searches for Ξ_{cc}

- SELEX experiment observed 15.9 and 5.6 \mathcal{Z}_{cc}^+ candidates in $\Lambda_c^+ K^- \pi^+$ and pD^+K^- spectrum, respectively
 - Combined mass: 3518.7 ± 1.7 MeV
 - $\tau(\Xi_{cc}^+) < 33$ fs @ 90% C. L.

•
$$R \equiv \frac{\sigma(\Xi_{cc}^+) \times \mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$$

 Negative results from FOCUS, BaBar, Belle and LHCb (0.65 fb⁻¹) experiments in different production environments

- Data sample: $1.7 \text{ fb}^{-1} @ \sqrt{s} = 13 \text{ TeV} (2016)$
- $\Xi_{cc}^{++} \to \Lambda_c^+ (\to pK^-\pi^+)K^-\pi^+\pi^+$
 - Multivariate selector
- Invariant mass spectrum
 - Significant structure at ~ 3620 MeV
 - No peak in wrong-sign and Λ⁺_c sideband samples
 - Confirmed in independent data sample

arXiv: 1707.01621

- Unbinned maximum-likelihood fit
- Yield: 313 ± 33
- Local significance > 12σ
- Resolution: $6.6 \pm 0.8 \text{ MeV}/c^2$

$$m(\Xi_{cc}^{++}) = 3621.40$$

$$\pm 0.72 (\text{stat.})$$

$$\pm 0.27 (\text{syst.})$$

$$\pm 0.14 (\Lambda_c^+) \text{ MeV}/c^2$$

Heavy flavour spectroscopy at LHCb

9/1/17

- Weakly decay signal
 - With minimum decay time requirement, the structure remains highly significant (> 12σ)

- Comparison with SELEX experiment
 - $m(\Xi_{cc}^{++})_{LHCb} m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV}$
 - Inconsistent with being isospin partners
- Further studies
 - Searches in additional decay modes
 - Lifetime and production cross-section measurement
 - Search for isospin partner Ξ_{cc}^+

Summary and outlook

- LHCb has fruitful results in heavy flavour spectroscopy (unexhausted)
 - Observation of $\Lambda_b^0 \to \chi_{c1,2} p K^-$
 - Observation of $J/\psi\phi$ structures
 - Unconfirmed *X*(5568)
 - Observation of five new narrow Ω_c^0 states
 - Observation of doubly charmed baryon \mathcal{Z}_{cc}^{++}
- More analyses with Run2 data ongoing
 - Stay tuned for the upcoming results

Thanks for your attention!

Backup

Observation of $\Lambda_b^0 \rightarrow \chi_{c1,2} p K^-$

• $\Lambda_b^0 \rightarrow J/\psi p K^-$ invariant mass distribution

- Relative branching fraction
 - $R_1 = 0.242 \pm 0.014 \pm 0.013 \pm 0.009$
 - $R_2 = 0.248 \pm 0.020 \pm 0.014 \pm 0.009$
 - where the uncertainties are statistical, systematic and due to uncertainty of $\chi_{c1,2} \rightarrow J/\psi\gamma$ branching fractions
- Absolute branching fractions can be acquired with
 - $\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)/\mathcal{B}(B^0 \to J/\psi K^*(892)^0)$
 - $\mathcal{B}(B^0 \rightarrow J/\psi K^*(892)^0)$

Heavy flavour spectroscopy at LHCb

Observation of $J/\psi\phi$ structures

- Parameterization
 - $m_{J/\psi\phi}, \theta_X, \theta_{J/\psi}^X, \theta_{\phi}^X, \Delta\phi_{X,J/\psi}, \Delta\phi_{X,\phi}$
 - where θ denotes helicity angles and $\Delta \phi$ angles between decay planes
- Spin-parity

	J^{PC}	Signif. of J ^{PC} assignments
X(4140)	1++	5.7σ
X(4274)	1++	5.8σ
X(4500)	0++	4.0σ
X(4700)	0++	4.5σ

X(5568) search at LHCb

• $B_s^0 \to D_s^- \pi^+$ and $B_s^0 \to J/\psi \phi$ decays

PRL 117 (2016) 152003

• $\rho^{\text{LHCb}}[p_{\text{T}}(B_s^0) > 15 \text{ GeV}] < 0.020 @ 95\% \text{ C. L.}$ $\rho^{\text{LHCb}}[p_{\text{T}}(B_s^0) > 10 \text{ GeV}] < 0.024 @ 95\% \text{ C. L.}$ $\rho^{\text{LHCb}}[p_{\text{T}}(B_s^0) > 5 \text{ GeV}] < 0.012 @ 95\% \text{ C. L.}$

- Selections
 - \mathcal{Z}_c^+ candidates
 - Proton PID requirement
 - Large \mathcal{Z}_c^+ flight-distance significance
 - \mathcal{Z}_c^+ candidates originating from the primary vertex
 - Likelihood ratio requirements
 - $\mathcal{L}(\mathbf{x}) = \sum_{i=1}^{11} \left[\ln \text{PDF}_{sig}(x_i) \ln \text{PDF}_{back}(x_i) \right]$
 - $\Xi_c^+ K^-$ candidates
 - Originating from primary vertex
 - Good vertex fit quality
 - High Kaon PID probability
 - $p_{\rm T}(\Xi_c^+K^-) > 4.5 {\rm ~GeV}$

- Selections
 - Final state tracks
 - Good track-quality
 - Appropriate PID probability
 - Minimum $p_{\rm T}$ requirments
 - Λ_c^+ candidates
 - Good vertex quality
 - Not originating from primary vertex
 - \mathcal{Z}_{cc}^{++} candidates
 - $p_{\rm T} > 4 ~{\rm GeV}$
 - Multivariate selector based on multilayer perceptron
 - Maximize $\epsilon/(\frac{5}{2}+\sqrt{B})$

Observation of doubly charmed baryon \mathcal{Z}_{cc}^{++}

- 2016 inclusive Λ_c sample with 10% pre-scale
- Λ_c inviriant mass distribution of signal sample after selections

Theory references on doubly charmed baryons

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy* of doubly heavy baryons, Phys. Atom. Nucl. **63** (2000) 274, arXiv:hep-ph/9811212, [Yad. Fiz. 63, 334 (2000)].

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Spectroscopy of doubly charmed baryons: Ξ_{cc}^+ and Ξ_{cc}^{++} , Mod. Phys. Lett. A14 (1999) 135, arXiv:hep-ph/9807375.

C. Itoh, T. Minamikawa, K. Miura, and T. Watanabe, *Doubly charmed baryon masses* and quark wave functions in baryons, Phys. Rev. **D61** (2000) 057502.

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy* of doubly heavy baryons, Phys. Rev. **D62** (2000) 054021.

K. Anikeev et al., B physics at the Tevatron: Run II and beyond, in Workshop on B physics at the Tevatron: Run II and beyond, Batavia, Illinois, September 23-25, 1999, 2001. arXiv:hep-ph/0201071.

V. V. Kiselev and A. K. Likhoded, *Baryons with two heavy quarks*, Phys. Usp. 45 (2002) 455, arXiv:hep-ph/0103169.

D. Ebert, R. N. Faustov, V. O. Galkin, and A. P. Martynenko, *Mass spectra of doubly heavy baryons in the relativistic quark model*, Phys. Rev. **D66** (2002) 014008, arXiv:hep-ph/0201217.

Heavy flavour spectroscopy at LHCb

Theory references on doubly charmed baryons

D.-H. He et al., Evaluation of the spectra of baryons containing two heavy quarks in a bag model, Phys. Rev. **D70** (2004) 094004, arXiv:hep-ph/0403301.

C.-H. Chang, C.-F. Qiao, J.-X. Wang, and X.-G. Wu, Estimate of the hadronic production of the doubly charmed baryon Ξ_{cc} in the general-mass variable-flavor-number scheme, Phys. Rev. **D73** (2006) 094022, arXiv:hep-ph/0601032.

W. Roberts and M. Pervin, *Heavy baryons in a quark model*, Int. J. Mod. Phys. A23 (2008) 2817, arXiv:0711.2492.

A. Valcarce, H. Garcilazo, and J. Vijande, *Towards an understanding of heavy baryon spectroscopy*, Eur. Phys. J. A37 (2008) 217, arXiv:0807.2973.

J.-R. Zhang and M.-Q. Huang, *Doubly heavy baryons in QCD sum rules*, Phys. Rev. **D78** (2008) 094007, arXiv:0810.5396.

Z.-G. Wang, Analysis of the $\frac{1}{2}^+$ doubly heavy baryon states with QCD sum rules, Eur. Phys. J. A45 (2010) 267, arXiv:1001.4693.

M. Karliner and J. L. Rosner, Baryons with two heavy quarks: masses, production, decays, and detection, Phys. Rev. D90 (2014) 094007, arXiv:1408.5877.

Theory references on doubly charmed baryons

K.-W. Wei, B. Chen, and X.-H. Guo, *Masses of doubly and triply charmed baryons*, Phys. Rev. **D92** (2015) 076008, arXiv:1503.05184.

Z.-F. Sun and M. J. Vicente Vacas, Masses of doubly charmed baryons in the extended on-mass-shell renormalization scheme, Phys. Rev. **D93** (2016) 094002, arXiv:1602.04714.

C. Alexandrou and C. Kallidonis, Low-lying baryon masses using $N_f = 2$ twisted mass clover-improved fermions directly at the physical point, arXiv:1704.02647.

B. Guberina, B. Melić, and H. Štefančić, *Inclusive decays and lifetimes of doubly charmed baryons*, Eur. Phys. J. C9 (1999) 213, arXiv:hep-ph/9901323.

V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Lifetimes of doubly charmed* baryons: Ξ_{cc}^+ and Ξ_{cc}^{++} , Phys. Rev. **D60** (1999) 014007, arXiv:hep-ph/9807354.

C.-H. Chang, T. Li, X.-Q. Li, and Y.-M. Wang, *Lifetime of doubly charmed baryons*, Commun. Theor. Phys. **49** (2008) 993, arXiv:0704.0016.

A. V. Berezhnoy and A. K. Likhoded, *Doubly heavy baryons*, Phys. Atom. Nucl. **79** (2016) 260, [Yad. Fiz. 79, 151 (2016)].