

Searches for electroweak production of charginos, neutralinos and sleptons with the ATLAS detector

Antoine Marzin (CERN)

on behalf of the ATLAS collaboration

PANIC 2017

01 - 05 September 2017 Beijing, China

Why EW SUSY searches?

- Search for EW SUSY below the TeV scale is motivated by naturalness arguments
- EW production has a low cross-section compared to strong production of squarks & gluinos
 - very challenging searches
 - ▶ but leads to multi-lepton signatures with very low SM background

EW SUSY mass spectrum

Gauge eigenstates Bino, Wino and Higgsinos mix to form the mass eigenstates :

4 neutralinos :
$$\tilde{\chi}_1^0$$
, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$
2 charginos : $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$
M₁ 0 $-g'v_d/\sqrt{2}$ $g'v_u/\sqrt{2}$
0 M_2 $gv_d/\sqrt{2}$ $g'v_u/\sqrt{2}$
 $g'v_d/\sqrt{2}$ $gv_d/\sqrt{2}$ 0 $-\mu$
Higgsino
Higgsino

Three typical EW SUSY mass spectrum used in simplified models, depending on the relative values of the M_1 , M_2 and μ parameters, each corresponding to a different $\tilde{\chi}_1^0$ flavor (ArXiv:1404.7191)

Overview of RPC EW searches

Signature depends on electroweakino mixture and sleptons masses : 2/3/4 leptons + E_T :

Wino-like and mass degenerate $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm} \rightarrow$ largest cross-section in most of MSSM parameter space

A. Marzin (CERN)

EW SUSY searches with ATLAS

Discrimination of SUSY signal and SM background

Many kinematic variables are used to discriminate SUSY vs SM :

Some variables initially developed to measure the mass of pair produced particles with semi-invisible decay also useful for SUSY vs SM discrimination

Example : m_{T2} : generalization of transverse mass m_T used to measure the W mass at hadron colliders :

$$m_{T2} = \min_{\mathbf{q}_{T}} \left[\max \left(m_{T}(\mathbf{p}_{T}^{\ell 1}, \mathbf{q}_{T}), m_{T}(\mathbf{p}_{T}^{\ell 2}, \mathbf{p}_{T}^{\text{miss}} - \mathbf{q}_{T}) \right) \right]$$

2-lepton analysis : selection

■ 2 ℓ Same Flavour Opposite Sign (SFOS) $(e^+e^-, \mu^+\mu^-)$ + jets :

- target W/Z-mediated decay
- \rightarrow request $m_{\ell\ell} \sim m_Z$, $m_{jj} \sim m_W$
- medium/large $\Delta m(\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$: $\rightarrow 2 \text{ SR with} \ge 2 \text{ jets and } \not \in_T > 150 \text{ , } 250 \text{ GeV}$
- small $\Delta m(\widetilde{\chi}_2^0/\widetilde{\chi}_1^{\pm},\widetilde{\chi}_1^0)$:
 - \rightarrow 2 SRs assuming either :
 - W recoil against the $Z + \not\!\!E_T$ system
 - full $W + Z + \not\!\!\! E_T$ system recoil against an ISR jet

■ 2ℓ Opposite Sign (OS) + 0jets :

- target models with light enough sleptons
- events are split into 2 categories with different bkg composition :
 - \circ Same Flavour $(e^+e^-,\mu^+\mu^-)$:
 - \rightarrow 13 SRs binned in m_{T2} and $m_{\ell\ell}$
 - \circ Different Flavour $(e^{\pm}\mu^{\mp})$:
 - \rightarrow 4 SRs binned in m_{T2}

2-lepton analysis : backgrounds+results

ATLAS-CONF-2017-039

• irreducible bkg :

 \circ dominated by diboson, then $t\bar{t}$ and Wt

- \rightarrow renormalise MC in CR for 2 ℓ +0jets
- \rightarrow taken from MC for 2 ℓ +jets

• reducible bkg :

∘ Z+jets with fake _T :

- \rightarrow from MC for 2 ℓ +0jets
- \rightarrow from γ +jets events for 2ℓ +jets
- $\circ \text{ non-prompt } \ell:$
- \rightarrow from data-driven matrix method

 2ℓ DF + 0jets

 2ℓ + jets

A. Marzin (CERN)

EW SUSY searches with ATLAS

 2ℓ SF + 0jets

2-lepton analysis : Interpretation

ATLAS-CONF-2017-039

Observed limit

Expected limit (±1 σerro)

ATLAS 8 TeV arXiv:1403.5294

i, i, ...,i, z, i, z,

AS Preliminary

s=13 TeV. 36.1 fb⁻¹

 $\mathsf{m}_{\underline{\lambda}_1}[\mathsf{GeV}]$ 450

400

350

300

250 200

■ Models with light sleptons :

- BR = 1/6 for each $\tilde{\ell}_L$ and $\tilde{\nu}$ flavour
- $m_{\tilde{\nu}} = m_{\tilde{\ell}_L} = (m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_1^\pm})/2$
- Models with heavy sleptons

3-lepton analysis : overview

ATLAS-CONF-2017-039

Event selection :

• W/Z-mediated decay

 $\circ \; m_{SFOS} \sim m_Z$

◦ 6 SR binned in $𝔅_T$, m_T , = 0 or ≥ 1 jet

• $\tilde{\ell}$ -mediated decay

◦ $m_{SFOS} \neq m_Z$, $E_T > 130$ GeV, $m_T > 110$ GeV ◦ 5 SR binned in $p_T^{\ell_3}$

Background estimates :

• irreducible bkg :

 \circ dominated by diboson WZ

 \rightarrow renormalise MC in dedicated control regions with reverted $m_{\rm T}$ cut

• reducible bkg :

◦ Z+jets, $t\bar{t}$, Wt, WW events with ≥ 1 non-prompt lepton → from data-driven fake factor method

W/Z-mediated decay SR

p^l [GeV]

3-lepton analysis : interpretation

A. Marzin (CERN)

2-tau analysis : overview

final states with τ experimentally more challenging than with e/μ , but well motivated :

- The lightest slepton is likely to be τ_1 , with many models predicting $m(\tilde{\tau}) \sim O(100)$ GeV
- light $\tilde{\tau}$ can lead to a dark matter relic density consistent with cosmological observations
- ► consider simplified models similar to the 2-3 ℓ analysis with $\tilde{\tau}_L, \tilde{\nu}_\tau$ mediated decay

Event selection :

- di- τ asymmetric in p_T , or $2\tau + \not\!\!\! E_T$ trigger
- \geq 2 hadronic τ OS
- $m_{\tau\tau} \neq m_Z \rightarrow \text{reject } Z + \text{jets}$
- *b*-jets veto \rightarrow reject events with *t*-quark
- 2 inclusive SRs which target low/high mass splitting

 low : Δm(χ₁[±], χ₁⁰) < 200 GeV
 high : Δm(χ₁[±], χ₁⁰) > 200 GeV
 apply ≠ cuts on 𝔅_T, m_{T2}, m_{ττ}, p_T^{τ1}, p_T^{τ2}

2-tau analysis : backgrounds

arXiv:1708.07875

• irreducible bkg :

◦ dominated by diboson *WW* and *ZZ* → $\tau\tau\nu\nu$ ◦ contributions from $t\bar{t}$, *Wt*, *Z*+jets → from MC, checked in validation regions

• reducible bkg :

 \circ W+jets with 1 jet mis-identified as τ \rightarrow renormalise MC to data in control regions \circ multi-jets with 2 jets mis-identified as τ \rightarrow from data-driven ABCD method : C/B = D/A

2-tau analysis : results

arXiv:1708.07875

A. Marzin (CERN)

EW SUSY searches with ATLAS

4-lepton analysis : Overview

■ Search for SUSY with R-parity violation :

- In RPV models, the LSP is unstable and decays to SM particles
- assume wino-like $\widetilde{\chi}_1^+$ NLSP, bino-like $\widetilde{\chi}_1^0$ LSP
- assume *L* violation with $\lambda_{121}, \lambda_{122} \neq 0$ such that $\tilde{\chi}_1^0$ decays to $e^+e^-\nu, \mu^+\mu^-\nu$ or $e^\pm\mu^\mp\nu$ with BR = 1/3

Event selection :

- $\circ \ge 4 \ell (e, \mu)$ with *Z* veto
- \circ 2 SR with $m_{\rm eff} > 600,\,900~{\rm GeV}$

Background estimates :

• irreducible bkg :

o dominated by ZZ, tt + Z and VVZ
o contributions from H, tWZ, tt WW, tt tt and tt t

• reducible bkg :

 \circ 1 fake lepton : WZ, WWW, $t\bar{t}W$

 \rightarrow all taken from MC, and tested in validation regions with low $m_{\rm eff}$

 \circ 2 fake leptons : $t\bar{t}$, Z+jets

 \rightarrow from data-driven fake-factor method applied in control region with *loose* leptons

 p_T^{μ} in VR with $m_{\rm eff} < 600 \, {\rm GeV}$

4-lepton analysis : results

No excess above SM prediction observed

SR with best expected sensitivity used to set limits for each signal point

• weaker limits for $m(LSP) \ll m(NLSP)$ because the decay product of the LSP tend to be collimated

Search for long-lived chargino : Overview

ATLAS-CONF-2017-017

■ In the pMSSM, ~70% of models with wino-like LSP predicts nearly mass degeneracy between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{0}$, with $\tau(\tilde{\chi}_1^{\pm}) \sim 0.15 - 0.25$ ns and with soft π^{\pm} not reconstructed in the detector \implies experimental signature is a disapearing track

■ Analysis improved wrt 8 TeV analysis thanks to the new innermost tracking layer installed for run 2 ⇒ can now use shorter tracks

Event selection :

- ISR recoil : back-to-back jet+ $\not\!\!E_T$, lepton veto
- 1 isolated **pixel tracklet** with
 - $\circ \ge 1$ hit in each of the 4 pixel layers
 - \circ no SCT hit \Longrightarrow disappearing condition
- Track reco efficiency of 5-10% for $\tau(\tilde{\chi}_1^{\pm}) = 0.2$ ns
- \implies 10 × better than standard tracks

Search for long-lived chargino : results

ATLAS-CONF-2017-017

Backgrounds :

- *tt* and *W*+jets events with a fake tracklet from :
 multiple-scattering, hadronic interactions
 leptons bremsstrahlung
- fake tracklet from a random combination of hits

⇒ extract bkg track pT templates from data and normalize them in a simultaneous fit of the pT spectrum

Conclusion

ATLAS has an extensive search program to cover all signatures of EW SUSY

▶ no excess above SM expectations so far

 \circ light sleptons

- \rightarrow Exclude $m(\tilde{\chi}_1^{\pm}) < 1150$ GeV
- \rightarrow Exclude $m(\tilde{\ell}) < 500 \text{ GeV}$

heavy sleptons

 \rightarrow Exclude $m(\tilde{\chi}_1^{\pm}) < 580 \text{ GeV}$

\implies More results to come soon

BACK-UP

General strategy for SUSY searches

Standard Model processes

■ strategy for early run 2 analyses with 2015 data :

- optimise the signal regions for discovery
- ▶ keep the analyses simple and robust : cut & count analyses
- ► define overlapping signal regions, and select the one with the best expected sensitivity to set exclusion limits on SUSY models

Irreducible backgrounds : semi data-driven technique

- Principle : renormalize MC in control regions kinematically close to the signal region
- Define CRs by reverting cuts on 1 or 2 variables we believe are more reliably modelled by MC
 - ▶ more robust against potential MC mis-modelling of critical variables
 - ▶ systematic uncertainties correlated between CR and SR largely cancel out
- compromise between low systematics and statistical uncertainties
- The extrapolation from the CR is validated in intermediate validation regions

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	-1) Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	MSUGRA/CMSSM $\tilde{q}_{1}, \tilde{q}_{-q} \tilde{q}_{1}^{2}$ (compressed) $\tilde{q}_{2}, \tilde{q}_{-q} q^{2}$ (compressed) $\tilde{q}_{2}, \tilde{g}_{-q} q^{q} \tilde{q}_{1}^{2}$ $\tilde{g}_{3}, \tilde{g}_{-q} q^{q} q^{2} \tilde{q}_{1}^{2}$ $\tilde{g}_{3}, \tilde{g}_{-q} q^{q} Q^{2} Q^{2}$ GMB (q (NLSP) GGM (q (NLSP) q (NLSP) GGM (q (NLSP) q (N	0.3 e, µ/1.2 τ : 0 mono-jet 0 3 e, µ 0 1.2 τ + 0.1 ℓ 2 γ 7 2 e, µ (Z) 0	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 1 b 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	A2 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 1.55 TeV 1.37 TeV 1.8 TeV	$\begin{split} m_{0}^{(2)}(j) = & m_{0}^{(2$	150 75655 ATLAS-CONF-3017-022 1604.07773 ATLAS-CONF-3017-022 ATLAS-CONF-3017-023 ATLAS-CONF-3017-033 1027.056710 1037.056910 1037.056910 1037.056400 1035.05500 1035.015500
3 ^{nf} gen. § med.	$\begin{array}{c} \bar{g}\bar{g}, \bar{g} \rightarrow b \bar{b} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow b \bar{t} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow b b \bar{\chi}_{1}^{+} \end{array}$	0 0-1 e, µ 0-1 e, µ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2	1.92 TeV 1.97 TeV 1.37 TeV	m(R ²)<600 GeV m(R ²)<200 GeV m(R ²)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0500
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^D \\ \tilde{b}_1 b_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^D \\ \tilde{b}_1 b_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^D \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{t}_1^D \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{t}_1^D \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{t}_1 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \\ \tilde{t}_1 \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \\ \tilde{t}_1 \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \\ \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \end{pmatrix}$	0 2 e, µ (SS) 0-2 e, µ 0-2 e, µ 0 2 e, µ (Z) 3 e, µ (Z) 1-2 e, µ	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes 4 Yes 2 Yes Yes Yes Yes	36.1 36.1 1.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	Fit 950 GeV 1177-170 GeV 2075-700 GeV A 90-186 GeV A 90-186 GeV J 90-186 GeV J 90-323 GeV J 150-600 GeV J 2026-800 GeV J 2026-800 GeV J 2026-800 GeV		$\begin{split} m(\tilde{t}_1^n) & \!$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209-2102, ATLAS-CONF-2016-077 1508.08816, ATLAS-CONF-2017-020 1604.0773 1403.55222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \tilde{\ell}_{R}^{(2)} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{*} \rightarrow \ell \pi(\tilde{r}); \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{*} \rightarrow \ell \pi(\tilde{r}); \\ \tilde{\chi}_{1}^{*} \chi$	2 ε.μ 2 ε.μ 2 τ 3 ε.μ 2·3 ε.μ ε.μ.γ 4 ε.μ *γG 1 ε.μ + γ •γG 2 γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	// 90-440 GeV 4* 710 GeV 4* 760 GeV 4* 760 GeV 4* 760 GeV 4* 760 GeV 4* 580 GeV 0 115-370 GeV 98 580 GeV	m(۴î)+n m(۴ĵ)+n	$\begin{split} m(\xi_1^n) = 0, \\ m(\xi_1^n) =$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.55493
Long-lived particles	$\begin{array}{l} \operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^+ \operatorname{prod.}, \log \operatorname{dived} \tilde{\chi}_1^+ \\ \operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \operatorname{prod.}, \log \operatorname{dived} \tilde{\chi}_1^+ \\ \operatorname{Stable} \operatorname{stroped} \tilde{g} \operatorname{R-hadron} \\ \operatorname{Stable} \tilde{g} \operatorname{R-hadron} \\ \operatorname{Mess} \operatorname{stable} \tilde{g} \operatorname{R-hadron} \\ \operatorname{GMSB}, \operatorname{stable} \tilde{\chi}_1^0 \rightarrow \mathcal{G}, \log \operatorname{dived} \tilde{\chi}_1^0 \\ \operatorname{GMSB}, \widetilde{\chi}_1^0 \rightarrow \mathcal{G}, \log \operatorname{dived} \widetilde{\chi}_1^0 \\ \end{array} $	Disapp. trk dE/dx trk 0 trk dE/dx trk 1·2 μ 2 γ displ. ee/eμ/μ displ. vtx + jet	1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes Yes Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	II 400 GeV II 485 GeV II 485 GeV II 500 GeV III 500 GeV <td>1.58 TeV 1.57 TeV</td> <td>$\begin{split} m(\tilde{t}_1^*), m(\tilde{t}_1^*) &= 160 \ \text{MeV}, \tau(\tilde{t}_1^*) &= 0.2 \ \text{m} \\ m(\tilde{t}_1^*), m(\tilde{t}_1^*) &= 160 \ \text{MeV}, \tau(\tilde{t}_1^*) &= 15 \ \text{m} \\ m(\tilde{t}_1^*) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ m(\tilde{t}_1^*) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ 10 &\leq \tan t < 10 \ \text{m} \\ 10 &\leq \tan t < 10 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 10 \ \text{m} \\ m(\tilde{t}_1) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 100 \ \text{m} \\ m(\tilde{t}_1) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 100 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 100 \ \text{m} \\ \tau < \tau(\tilde{t}_1) < 11 \ \text{Fe} \\ \tau < \tau(\tilde{t}_1) < 100 \ \text{m} \\ \tau < \tau(\tilde{t}_1) < 11 \ \text{Fe} \\ \tau < \tau(\tilde{t}_1) < 100 \ \text{m} \\ \tau < \tau < \tau(\tilde{t}_1) < 100 \ \text{m} \\ \tau < \tau < \tau < 100 \ \text{m} \\ \tau <$</td> <td>ATLAS-CONF-2017-017 1506-05532 1316.0584 1606-05129 1604-04520 1411.0795 1402.05142 1504-05162 1504-05162</td>	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{t}_1^*), m(\tilde{t}_1^*) &= 160 \ \text{MeV}, \tau(\tilde{t}_1^*) &= 0.2 \ \text{m} \\ m(\tilde{t}_1^*), m(\tilde{t}_1^*) &= 160 \ \text{MeV}, \tau(\tilde{t}_1^*) &= 15 \ \text{m} \\ m(\tilde{t}_1^*) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ m(\tilde{t}_1^*) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ 10 &\leq \tan t < 10 \ \text{m} \\ 10 &\leq \tan t < 10 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 10 \ \text{m} \\ m(\tilde{t}_1) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 100 \ \text{m} \\ m(\tilde{t}_1) &= 100 \ \text{GeV}, \tau > 10 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 100 \ \text{m} \\ \tau < \tau(\tilde{t}_1^*) < 100 \ \text{m} \\ \tau < \tau(\tilde{t}_1) < 11 \ \text{Fe} \\ \tau < \tau(\tilde{t}_1) < 100 \ \text{m} \\ \tau < \tau(\tilde{t}_1) < 11 \ \text{Fe} \\ \tau < \tau(\tilde{t}_1) < 100 \ \text{m} \\ \tau < \tau < \tau(\tilde{t}_1) < 100 \ \text{m} \\ \tau < \tau < \tau < 100 \ \text{m} \\ \tau < $	ATLAS-CONF-2017-017 1506-05532 1316.0584 1606-05129 1604-04520 1411.0795 1402.05142 1504-05162 1504-05162
RPV	$ \begin{array}{l} LFV pp {\rightarrow} \bar{v}_{7} + X, \bar{v}_{7} {\rightarrow} e\mu/e\tau/\mu\tau \\ Blinear RPV CMSSM \\ \tilde{K}^{T}_{1}, \tilde{K}^{T}_{1} \otimes V^{T}_{1} \otimes $	$e\mu,e\tau,\mu\tau$ $2 e,\mu$ (SS) $4 e,\mu$ $3 e,\mu + \tau$ $0 4 - 0 4 - 1 e,\mu 8 = 1 e,\mu 8 = 0$ $2 e,\mu$	0-3 b 5 large-R ji 5 large-R ji 10 jets/0-4 10 jets/0-4 2 jets + 2 l 2 b	Yes Yes Yes ats ats b b b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	5. 47. 1.147 12. 1.147 13. 450 GeV 1.147 14. 1.08 Te 2 2 15. 410 GeV 450-510 GeV 0. 0 16. 410 GeV 650-510 GeV 0.	1.9 TeV 1.45 TeV eV 1.55 TeV 2.1 TeV 1.65 TeV 1.45 TeV	$\begin{split} & J_{111}^{*} = 0.11, J_{122(110)(210)} = 0.67 \\ & m(i_{1}) = m(i_{2}), c_{123}, r_{143} = 0 \\ & m(i_{1}^{*}) = 0.024, M_{112} = 0 \\ & m(i_{1}^{*}) = 0.22, m(i_{1}^{*}), J_{133} = 0 \\ & m(i_{1}^{*}) = 0.22, m(i_{1}^{*}), J_{133} = 0 \\ & m(i_{1}^{*}) = 0.22, m(i_{1}^{*}) = 0 \\ & m(i_{1}^{*}) = 0.22, m(i_{1}^{*}) = 0 \\ & m(i_{1}^{*}) = 1.164, J_{112} = 0 \\ & \text{BP}(i_{1}, \rightarrow br/\mu) > 20\% \end{split}$	1607.80079 1404.8500 ATLAS-00NF-2016.075 1405.5008 ATLAS-00NF-2016.607 ATLAS-00NF-2016.607 ATLAS-00NF-2016.607 ATLAS-00NF-2017.013 ATLAS-00NF-2017.013 ATLAS-00NF-2017.015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$	0	2 c	Yes	20.3	2 510 GeV		m($\hat{\ell}_1^0$)<200 GeV	1501.01325
Only a selection of the available mass limits on new states or obtained and the available mass limits on new states or obtained and the limits are based on 10 ⁻¹ 1 Mass scale [TeV]									,

shenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. ATLAS Preliminary

√s = 7, 8, 13 TeV