

Neutron Veto Detector of DarkSide-50 Experiment

Hao Qian Princeton University PANIC 2017 09/03/2017

Overview of DarkSide-50 Experiment

DarkSide-50 TPC

- Location: LNGS, Italy (3800m underground)
- Target: WIMP direct search with sensitivity $< 10^{-44}$ cm^2
- Operation: 2013-present

- two-phase Time Projection Chamber
- 38 PMTs in TPC (19 each at top and bottom)
- 50 kg active Underground Argon
- low ${}^{39}Ar$ to reduce β background
- TPC 3D event reconstruction

see Xin's talk

- ³⁹Ar (in Atmospheric Argon) has 1 Bq/kg of β decay (τ =388yr, Q=565 keV)
- AAr replaced by UAr in 2nd run of DarkSide-50
- ${}^{39}Ar$ activity in UAr is 1400 times lower than AAr

Phys.Rev.D 93, 081101(2016)

Pulse Shape Discrimination (PSD) in Liquid Argon

- LAr scintillation light (S1) has 2 components: τ_{fast}=7ns, τ_{slow}=1600ns
 f_{prompt} = # prompt photons # total photons as discrimination var
- 90ns as the optimal prompt time to optimize PSD
- Two events with ~ the same integrated S1 signal
- use f_{90} to separate ER and NR
- ER: $f_{90} \approx 0.3$
- NR: $f_{90} \approx 0.75$
- Electron rejection power > 1.5×10^7

see Xin's talk

Neutron Veto Detector of DarkSide-50 Experiment

Darkside-50 Neutron Veto

- TPC inside Neutron Veto Detector
- 4 m diameter Stainless Steel Sphere
- 30 t Boron-loaded Organic Liquid Scintillator
- 5% Trimethyl borate(TMB, with natural ¹⁰B)
- 110 8-inch PMTs
- Water Cherenkov Detector installed outside
- active shielding against cosmic rays (muon, etc) by WCD
- 2. NV: detect neutrons and γ rays in coincidence with TPC
- 3. NV: neutron capture on ${}^{10}B$, ${}^{1}H(\sim 8\%)$, ${}^{12}C(\sim 2\%)$

Background: NR

- WIMPs give NR-like signal
- NR bg cannot be rejected by PSD
- ✓ Cosmogenic Neutron: <3 n/yr (MC, in TPC, all easily vetoed)
- Radiogenic neutron:

Hao Qian

✓ Fission reactions: <4.4 e-3/yr (MC,after all cuts)
○ (α,n) Neutron reactions:

• mainly comes from detector materials

Neutron Detection

- Time window in Neutron Veto
- total NV acquisition window: 220 μs
- Preprompt: [-10, -0.05] μs
- Prompt: [-0.05,0.25] μs
- Delayed: [0.25,190] μs

Target Veto Efficiency > 99.5%

- Neutron Capture
- Isotopes: ¹⁰*B*, ¹*H*, ¹²*C*
- Delayed Cut: max charge in sliding window>6PE
- calibrate with ²⁴¹Am ⁹Be

- in coincidence with TPC
- Neutron Thermalization
- very fast (<200ns)
- Prompt cut: sum charge in ROI>1PE
- calibrate with ²⁴¹Am¹³C

- Thermalized Neutron Random Walk before capture
- No signal produced

Neutron Calibration:²⁴¹Am ⁹Be

Goal

- quantify the NV response to neutron signals
- study the neutron capture signal in delayed window

²⁴¹Am ⁹Be decay mechanism

- Br = 36%: neutron only channel
- Br = 61%: neutron + γ (4.4 MeV)
- Br = 3%: neutron + γ (4.4 MeV) + γ (3.2 MeV)

$^{241}Am \ ^9Be$ neutron only spectrum (MC)

source placed ~1cm outside TPC cryostat

Neutron Calibration:²⁴¹Am ⁹Be

Feature

- ¹⁰*B* isotope in TMB
- neutron capture cross section on ${}^{10}B$: 3838 b
- neutron capture time: τ = 21.81±0.20 μs (5% TMB)
- delayed neutron capture threshold set at 6PE (below α-only peak) to get high veto efficiency

JINST, 11 (2016): P03016

Neutron Calibration:²⁴¹Am¹³C

Goal

- negligible γ coincident with neutron
- measure neutron thermalization signal
- tune NR quenching model
- study the prompt neutron efficiency

- α from ²⁴¹*Am* decay:
 - 99.5% has E_α>5.39MeV
- α + ¹³C \rightarrow ¹⁶O + n
- threshold of ¹⁶O first excited state: 5.048MeV
- gold foil wrap around ^{241}Am , degrades α to below excited state threshold
- source surround by ~2mm thick lead to block 60 keV ²⁴¹Am x-rays

source is placed ~1cm outside TPC cryostat

Neutron Calibration:²⁴¹Am¹³C

²⁴¹Am¹³C Prompt Neutron Thermalization signal

• Quenching Model (Craun et al):

$$Q = E * LY * \frac{1}{1 + kB * \frac{dE}{dx} + C * (\frac{dE}{dx})^2}$$

add non-linearity for NR

Radiogenic Neutron: MC

- Use ²⁴¹Am¹³C data to measure veto efficiency for events with WIMP-like TPC signals
- Use ${}^{241}Am{}^{13}C$ and ${}^{241}Am{}^{9}Be$ data to tune detector (TPC + NV) response in MC
- generate ²⁴¹Am¹³C and radiogenic neutrons in MC
 - simulate 0-10MeV neutrons uniformly at each position of detector
 - calculate probability of neutrons passing cuts
- correct measured ²⁴¹Am¹³C efficiency for different position and spectrum of radiogenic neutron

Radiogenic Neutron: MC

- generate flat neutron spectrum
- calculate probability of neutron passing TPC Cuts:
 - TPC fiducial volume
 - Single NR
 - NR energy range
- calculate probability of neutron passing veto cuts
- use NeuCBOT software (based on TALYS and SRIM database, available at https://github.com/shawest/neucbot)
 - calculate (α ,n) yield
 - get neutron spectra for one year

Radiogenic Neutron: Positions

Neutron Positions	Material
PMT Stem	Borosilicate glass
PMT Electronics	Be-Cu alloy connectors
Cryostat Walls	Stainless Steel
Multilayer Insulation	Aluminized mylar foils
Inner Flange	Stainless Steel
Outer Flange	Viton O-ring, Stainless Steel

arXiv: 1702.02465

Radiogenic Neutron: Probability and Rate

- simulate 0-10MeV neutrons uniformly at each position
- calculate probability of neutrons passing cuts
- simulate radioactive decay chains: ²³⁸U, ²³⁵U, ²³²Th
- break ²³⁸U decay chain at , ²²⁶Ra and ²¹⁰Pb (when data available)
- sum over neutron spectra from each source for each position to get neutrons produced per year
- scale the neutron production rate per year by cut-survival probability to get estimated surviving bg per year

Radiogenic Neutron: Prediction for one year

Radiogenic Neutron: Prediction for one year							
Position	Total	TPC cuts	Preprompt	Prompt	Delayed	All	VIENI
PMT Stem	1948.64	17.3893	14.2135	0.1637	0.0433	0.0304	
PMT Electronics	33.84	0.2287	0.1852	0.0023	1.e-3	7.8e-4	
Cryostat Walls	8.48	0.0218	0.0191	2.3e-4	8e-5	3e-5	
Multilayer Insulation	5.34	0.017	0.0125	1.6e-4	1e-4	7.3e-5	
Inner Flange	14.27	0.0134	0.0093	2e-4	7.3e-5	2.45e-5	
Outer Flange	794.15	0.3935	0.2621	5.2e-3	2.8e-3	6.3e-4	
Total	2804.72	18.0637	11.4004	0.1334	0.0366	0.0320±0.0014	

Radiogenic Neutron: Veto Efficiency Vs Energy

Total Veto Efficiency Vs Neutron Energy

• at each energy bin, average the efficiency from each position

Radiogenic Neutron: Summary

• After applying all TPC cuts, use neutron veto cuts to get the veto efficiency:

Prompt Cut Only Veto	Delayed Cut Only Veto	Total (all Veto Cuts) Veto
Efficiency	Efficiency	Efficiency
99.05%±0.02%	99.74% <u>+</u> 0.01%	99.82% <u>+</u> 0.01%

- With TPC and NV, total neutron rejection power ~500
- With TPC and NV, expect 0.0320 ± 0.0014 radiogenic neutron bg per year
- In the furture, count NR bg in 500-days data and check with MC prediction
- Stay tuned for new results coming this fall with blind data analysis

Backup Slides

Status of DarkSide-50

Stay tuned for new results coming this fall

- ~500 live-days of usable post-70-day UAr data
- Signal region hidden for the first Blind Analysis
- Cuts and bg prediction using open data
- Most bg estimated and under control:
 - ✓ Radiogenic neutrons
 - ✓ Cosmogenic neutrons
 - ✓ Single and Multiple ERs in LAr
 - ✓ Surface bg
 - \checkmark Multiple Compton scatter of γ events
- still in progress:
 - Cherenkov signal
- Prepare final tests before box opening

Current limits with DarkSide-50

21

BackUp: ²⁴¹Am ⁹Be, ²⁴¹Am¹³C and UAr Prompt Spectrum

