Status of the Hyper-Kamiokande experiment

Masahiro Kuze Tokyo Institute of Technology (for Hyper-Kamiokande proto-collaboration)

PANIC 2017 Beijing, 1 Sep. 2017

東京工業大学 Tokyo Institute of Technology

Neutrino mixing

$$\begin{pmatrix} \boldsymbol{v}_e \\ \boldsymbol{v}_e \end{pmatrix} \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_1 \end{pmatrix}$$
$$= \begin{pmatrix} U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{pmatrix}$$

PMNS matrix (Pontecorvo-Maki-Nakagawa-Sakata)

 v_e, v_μ, v_τ : flavor eigenstates. v_1, v_2, v_3 : mass eigenstates of $m = m_1, m_2, m_3$.

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{2} \\ v_{3} \end{pmatrix}$$

 $c_{23} = \cos \theta_{23}$, etc.

3 mixing angles (θ_{12} , θ_{23} , θ_{13}) + 1 complex phase (δ) \leftarrow CP violation

Neutrino oscillation

IF $\theta \neq 0$ AND $\Delta m^2 \neq 0$, flavor transmutation occurs. $P(v_i \rightarrow v_j) = \sin^2 2\theta_{ij} \times \sin^2(1.27\Delta m^2 L/E)$ (2 flavor approx.)

 Δm^2 in (eV²), L/E in (km/GeV or m/MeV)

Outstanding issues in neutrino physics

• PMNS matrix:

All 3 mixing angles θ_{ij} are measured. Octant of θ_{23} not yet known (> 45° or < 45°) CP violation phase δ_{CP} is unknown.

• <u>Neutrino masses</u>:

Both mass² differences Δm^2_{32} and Δm^2_{21} measured. Sign(Δm^2_{32}) still unknown - Mass Hierarchy (Mass Ordering) $m_3 \gg m_2 > m_1$ (normal) or $m_2 > m_1 \gg m_3$ (inverted) Absolute m_{ν} not measurable with ν oscillation $\rightarrow 0 \nu 2 \beta$ (if Majorana)/direct β measurement (KATRIN) and

cosmological constraints on Σm_{ν} (ν osc. $\rightarrow \Sigma m_{\nu}$ > 0.05 eV)

Super-K@Kamioka

ND280 @Tokai

T2K results on δ_{CP}

- Note: results from up to 2016 data (Run 1-7)
- See talks by T. Kobayashi today and by X. Lu tomorrow for latest results (Run 1-8)
- $\delta = 0$ or π excluded at 90% C.L.

Use reactor θ_{13} constraint

$T2K \rightarrow T2K - II \rightarrow T2HK$

∑ ≚1400 T2K was proposed with 7.8E20 POT <u>م</u> 1200 - So far accumulated 1.5E20 T2K-II (till ~2026) to collect 20E20 MR Power Supply upgrade MR Power Supply upgrade (>750kW) 800 - $\sim 3\sigma$ evidence if $\delta \sim -90$ deg 600 T2HK (from ~2026) with 1.3MW beam 400 – Hyper-K as the Far Detector 200 Definite observation of CP violation 2019 2021 2023 2025 2017 2027 2029 2031 2015 **T2K-II Physics Potential** T2K Preliminary T2K Preliminary T2K Preliminary χ^2 to exclude sin δ_{CP} =0 χ^2 to exclude sin $\delta_{
m CP}$ =0 20x10²¹ POT w/ eff. stat. & sys. improvements exclude sinô_{CP}=0 20x10²¹ POT w/ eff. stat. & sys. improvements - True sin²θ₂₃=0.43 7.8x10²¹ POT w/ 2016 sys. errs. .8x10²¹ POT w/ 2016 sys. errs w/ eff. stat. improvements (no sys. errors) •True sin²θ₂₃=0.50 True sin²θ₂₃=0.43 True sin²θ₂₃=0.43 15 eff. stat. & svs. improveme True $\sin^2\theta_{23}=0.50$ True $\sin^2\theta_{23}=0.50$ True $\sin^2\theta_{23}=0.60$ True $\sin^2\theta_{22}=0.60$ True sin²θ₂₃=0.60 10⊢_{3σ<u>C.L</u>,} 10⊢_{3σ<u>C.L.</u>} 99% C.L 99% C.L χ^2 to 5ł 90% (< 0 _200 0<u>L</u>_200 100 -100 0 200 100 -100200 0 15 20 10 True $\delta_{CP}(^{\circ})$ True $\delta_{CP}(^{\circ})$ Protons-on-Target (x10²¹) external hierarchy input H.A. Tanaka, Neutrino 2016 8 hierarchy unknown

Hyper-Kamiokande

- 2x260 kton tank (D74m×H60m)
- 190 kton fiducial mass/tank (~×10 of Super-K)
- Aim for quick start w/ 1 tank
- 40,000 PMTs with 2x eff.
- Acc. ν : δ_{CP} measurement
- Atm. ν : mass hierarchy
- Astronomical ν : Supernova and solar ν
- Observe nucleon decay

CP violation with T2HK

- Compare $\nu_{\mu} \rightarrow \nu_{e}$ appearance for ν_{μ} and anti- ν_{μ}
- High statistics: no need to rely on reactor θ_{13}

Number of signal candidate events, 1.3 MW × 10 years (10⁸ sec), $\nu : \overline{\nu} = 1:3$

for $\delta_{CP} = 0$	Signal v _µ →v _e CC	Wrong sign appearance	v _µ /v _µ ¯CC	Beam v _e /v _e - contamination	NC
u beam	1,643	15	7	259	134
$ar{ u}$ beam	1,183	206	4	317	196

Accessing M.H. by atm- ν

- Matter effect: resonant enhancement of $\nu_{\rm e}$ oscillation at certain energy/zenith-angle
- Effect reverses for Normal and Inverted H.

Atmospheric ν in Hyper-K

- Combining Atm- ν and Acc- ν data

- > 3σ determination for any θ_{23}
- Good chance to determine θ_{23} octant

Neutrino Astrophysics with HK

- Supernova burst ν
 - -For SN@10kpc, 50-80k evts
 - 1 deg. pointing resolution
 - -Study detailed mechanism
- Supernova Relic Neutrinos
 - -Expect SK-Gd to discover 1st
 - –High-stat measurement by HK
 - -History of star/BH formation
- Solar ν and more ...

Proton decay in HK

• Great potential for $e^+\pi^0$ mode, reaching 10³⁵ years sensitivity

- Almost BG free
- Complementary to DUNE, who is good at ν K mode

Candidate site

- •8 km south of Super-K
- Geological surveys with boring and seismic wave analysis

Confirmed that the rock condition is good enough. Pinned down the candidate tank potion. S. Nakayama WIN 2017

Intermediate water detector

- Measure ν +H₂O events at varying off-axis angles (i.e. varying known ν spectra) @1~2 km, reducing systematics together with ND280 upgrade
- Superpose and predict interaction at Hyper-K (after oscillation!)
- Proposed as J-PARC E61 with international collaboration

17

Project status

London, July 2016

- Proto-collaboration formed since 2015
 - -300 members from 15 countries (70% overseas)
- Selected by Science Council of Japan as a top-priority large-scale project (Master Plan 2017)
- Selected by MEXT in Roadmap 2017 on promotion of large research projects
- Budget request submission being prepared

T2HKK (Tokai 2 HK & Korea)

- Idea to build a 2nd tank in Korea ("another" Off-Axis beam reaches Earth surface in Korea)
- L ~1100 km \rightarrow large matter effect \rightarrow Mass Hierarchy sensitivity
- > 5σ for any δ_{CP} value
- Also δ_{CP} precision improves

T2HKK White Paper 1611.06118

PLB 637(2006)266 PRD 76(2007)093002

Timeline and Summary

H.-K. Tanaka, TAUP 2017

- With x10 volume and x2 photo efficiency, Hyper-K will lead neutrino physics in the next generation.
- Proven technology of Water Cherenkov promises fastest physics.
- Very good chance to observe leptonic CP violation, further precise measurement to explore new physics.
- Rich physics programs with acc.-, atm.- astro- neutrinos and nucleon decay search.
- Please join!