

The CUORE bolometric detector for neutrinoless double beta decay searches

Lucia Canonica

Massachusetts Institute of Technology Gran Sasso National Laboratory, INFN

The 21st Particles and Nuclei International Conference (PANIC2017) Beijing, China

Double beta decay

Double beta decay is a very rare nuclear decay $(N,Z) \rightarrow (N-2, Z+2)$

The CUORE experiment

Cryogenic Underground Observatory for Rare Events

Operate a huge thermal detector array in a low radioactivity and low vibrations environment

- Closely packed array of 988 TeO₂ crystals (19 towers of 52 crystals 5×5×5 cm³, 0.75 kg each)
- Mass of TeO₂: 742 kg (206 kg of ¹³⁰Te)
- Energy resolution goal: 5 keV FWHM @ 2615 keV
- Operating temperature: ~10 mK
- Mass to be cooled down: ~15 tonnes (Pb, Cu and TeO₂)
- Background aim: 10⁻² c/keV/kg/year
- $T_{1/2}$ sensitivity in 5 years (90% C.L.): ~ 9 x 10²⁵ yr

TeO₂ bolometers

- natTeO₂ crystals —> source = detector
- NTD-Ge thermistor (R@work ~ 10-100 M Ω) R(T)=R₀ exp $[\frac{T_0}{T}]^{1/2}$
- Resolution @0v $\beta\beta$ energy (2528 keV): $\Delta E= 5-7$ keV FWHM

 $\Delta T_{NTD} \sim 10-20 \ \mu \text{K/MeV}$ $\Delta T_{crystal} \sim 100 \ \mu \text{K/MeV}$ $\Delta V_{NTD} \sim 300 \ \mu V/MeV$ $\Delta R_{NTD} \sim 3 \ M\Omega/MeV$

CUORE @ LNGS

- Gran Sasso National Laboratory
- ~3600 m.w.e. deep
- µs: ~3x10⁻⁸/(s cm²)
- γs: ~0.73/(s cm²)
- neutrons: 4x10⁻⁶ n/(s cm²)

Arrays of TeO₂ bolometers

CUORE-module: a tower

- Strict material selection (e.g. raw materials)
- Strict surface cleaning technique for Cu and TeO₂
- Minimization of Rn exposure (Glove Box assembly)

The cryogenic infrastructure

- Experimental requirements
 - large experimental volume for detector and shielding
 - stable base temperature @ 10mK
 - low radioactive background from the cryogenic apparatus
 - high system reliability to guarantee years of operation
 - low vibration environment
 - Cryogen-free cryostat
 - Fast Cooling System (4He gas) down to ~50K
 - 5 Pulse Tubes cryocooler down to 4K
 - Dilution Refrigerator down to operating temperature ~10mK

Cryostat total mass ~30 tons Mass to be cooled < 4K: ~15tons Mass to be cooled < 50mK: ~3 tons

Cryostat subsystems

SHIELDINGS

DCS Detector Calibration System

 12 ²³²Th γ-ray sources (thoriated tungsten) are outside cryostat during physics datataking and lowered into cryostat and
cooled to base temperature for calibration

WIRING

- 2600 wires from 300 K to Mixing Chamber
- •171 PEN-Cu cables from Mixing Chamber to NTDs

PANIC2017, 1-5 Sept 2017

Detector installation

- Performed in a radon-free environment:
 - protected area inside the CUORE clean room, flushed with radon-free air (Rn concentration <1 mBq/m³)
- Completed at the end of August 2016
- Cool down started at the beginning of December 2016. The cryostat reached a stable base temperature of ~7mK on Jan 27, 2017.

Physics data taking

Dataset 2 time breakdown

- Science operations started on April 14th, 2017.
 - <u>Dataset1</u>: very short (identified issue with the thermistor bias on about 1/3 of the channels)
 - <u>Dataset2</u>: 3 weeks of physics data, plus an initial and a final calibration.
- Acquired statistic for 0vββ decay search:
 - TeO₂ exposure: 38.1 kg yr
 - ¹³⁰Te exposure: 10.6 kg yr

- Operational performance:
 - 984/988 operational channels
 - Excellent data-taking efficiency

Calibration spectrum

²³²Th sources deployed inside the CUORE detector

 Energy spectrum of the CUORE detectors (899 channels selected for analysis: 90% best performing channels for initial analysis)

PANIC2017, 1-5 Sept 2017

CUORE Background Spectrum

- Significant reduction in the γ region with respect to the prototype CUORE-0 (as expected)
- Spectrum is consistent with the background expectations

Ovßß analysis

- Simultaneous unbinned extended maximum likelihood fit in [2465-2575] keV
- The fit has 3 components:
 - a posited peak at the Q-value of ¹³⁰Te
 - a floating peak to account for the ⁶⁰Co sum gamma line (~2505 keV)
 - a constant continuum background, (multi-Compton γ from ²⁰⁸TI and surface α events)

PANIC2017, 1-5 Sept 2017

Outlook

 We combined the CUORE result with the existing ¹³⁰Te exposure: 19.75 kg·yr of Cuoricino and 9.8 kg·yr of CUORE-0

FWHM: 5keV exclusion sensitivity (90% C. L.): - 2·10²⁵ yr after 3 months - 9·10²⁵ yr after 5 yr discovery potential (3σ) - 7·10²⁴ yr after 3 months - 4·10²⁵ yr after 5 yr

Conclusion

- CUORE is the first tonne-scale bolometric 0vββ detector.
- The cryogenic system works exceptionally well.
- CUORE is most sensitive ¹³⁰Te experiment to date after just 3 weeks of data taking
- Invaluable operational experience, information on detector performance and backgrounds, end-to-end analysis
- Background rates consistent with expectations
- A further optimization of detector performance is possible.
- Data taking has restarted at the end of July 2017, more results will come shortly —> Stay tuned!

The CUORE Collaboration

