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Outline:



-initial state composed of a deuteron and a momentum eigenstate of 

the projectile nucleon

- the free propagator of three nucleons

P - a sum of a cyclical and anticyclical permutation of the three nucleons

t - the two-body t-operator

- complete 3NF

( )

123

iV - is that part of the 3NF which singles out the particle „i” and which is symmetrical 

under the exchange of the other two particles

Elastic scattering amplitude 

Faddeev equation is numerically solved in momentum space using a partial 

wave decomposition

3N continuum Faddeev equation     (W.Gloeckle et al., Phys.Rept.274,107(1996)):
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Technical performance:
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Let us divide the partial wave states into those with the total izospin T=1/2:

and with T=3/2:

Assuming charge conservation and employing the notation where the neutron (proton)

isospin projection is 1/2 ( -1/2 ) the 2N t-operator in the three-particle isospin space can 

be decomposed for the nd system as: 

where tnn and tnp are solutions of the Lippman-Schwinger equations driven by the vnn

and vnp potentials, respectively.   
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As a result one gets the amplitudes <pq|T|> and <pq|T|> which fulfill 

the following set of coupled integral equations:  
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The form of the couplings follows from the fact that the incoming nd state |> has isospin

T=1/2, the permutation operator is diagonal in the total isospin, and the 3NF is assumed to 

conserve the total izospin.   



It follows that a difference between neutron-proton and neutron-neutron (or proton-proton) 

interactions (charge independence breaking of the NN forces (CIB)) will cause 

transitions between 3N isospin T=1/2 and T=3/2 states.

Since the incoming nucleon-deuteron state |>  has isospin T=1/2 and the free propagator G
0

as well as the permutation operator P are diagonal in isospin, it follows that the isospin T=3/2 

amplitudes <pq |T |> are generated by CIB in t=1 nucleon-nucleon states. Their magnitude 

is determined by magnitude of CIB in NN interactions.

These T=3/2 amplitudes will not contribute directly to the elastic scattering

(the outgoing state |'> has isospin T=1/2), but will contribute directly to the nd breakup

transition amplitude where the outgoing state |
0
>=|pq> has T=1/2 and T=3/2 contributions.
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The form of the couplings follows from the fact that the incoming nd state |> has izospin T=1/2, the 

permutation operator is diagonal in the total isospin, the 3NF is assumed to conserve the total izospin,

and the 2N t-matrix has the follwing izospin structure:   



Largest CIB effects are in 1S0 NN force, what is clearly seen in the values of the corresponding

np and nn (pp) scattering lengths.

The nonzero values of T=3/2 <pq|T|> amplitudes will result only in those t=1 3N partial waves

where 2N t-matrices tnp and tnn differ. In such a case for each T=1/2  -state the corresponding T=3/2

-state will appear – that leads to increase of the total numer of 3N partial wave states, making

calculations more complex and time consuming. 

For 3N total angular momentum J=11/2 and higher the number of partial wave states (=number of 

coupled integral equations in two continuous variables p and q to be solved) amounts to 142 when

all 2N subsystem angular momenta up to j=5 are included. When in all t=1 states CIB is taken

into account that numer will increase to 207. When CIB only in 1S0 is considered that numer is 143.

We solved 3N continuum Faddeev equations taking jmax=5 and Jmax=25 with semi-localy regularized

chiral N4LO NN potential (regulator R=0.9 fm) alone (E.Epelbaum et al.,Eur. Phys. J. A51 (2015)) or

combined with the N2LO 3NF. The strengths of the one-pion exchange term in that 3NF was CD=6.0 

and of the 3N contact term CE=-1.094. That combination of NN and 3NF reproduces 3H binding energy

and provides quite a good descritpion of the nd elastic scattering cross section data at higher energies. 

We checked that conclusions remain unchanged when taking AV18 potential alone or combined with 

the Urbana IX 3NF 



How large is CIB in NN interactions ?        
1S0 NN partial wave state:



33P0 NN partial wave state:



In order to find out the importance of T=3/2  <pq|T|> - amplitudes and to check, what a minimal

treatment of CIB is required to reproduce exact result, we have done a number of calculations, 

with and without 3N force, namely:

1. Full treatment including CIB (T=3/2 states) in all t=1 3N partial waves – it is an exact result

to which others (next points) are only approximations !

2.   CIB only in 1S0 state. 

3.   No CIB (no T=3/2 states) but effective t-matrix teff=2/3tnn+1/3tnp in all t=1 states (”2/3-1/3 rule”).

4.   No CIB and only np force in 1S0.

5.   No CIB and only nn force in 1S0.



















Summary and conclusions:

• We investigated the importance of the scattering amplitude components with the total

3N isospin T=3/2 in 3N reactions. 

• The inclusion of these components is required to account for CIB effects of the NN 

interaction. The difference between np and nn (pp) forces leads to a situation in which

also the matrix elements of the 3NF between T=3/2 states contribute to the considered

3N reactions. 

• The modern NN interactions, which describe existing pp and np data with high 

precision, provide pp and np t-matrices in t=1 NN states, which differ up to  ~10 %. 

Such a magnitude of CIB requires, that the isospin T=3/2 components are included in 

the calculation of the breakup reaction, especially for the regions of the breakup phase-

space close to the FSI condition. 

• However, in order to account practically for all CIB effects it is sufficient to restrict the 

inclusion of T=3/2 to the 1S0 partial wave state only instead of doing it in  all t=1 states. 



• For elastic scattering we found that the T=3/2 components can be neglected completely

and all CIB effects are accounted for by restricting to the total 3N isospin T=1/2 partial

waves only and using the effective t-matrix generated with the ``2/3-1/3'' rule

teff=(2/3)tnn+(1/3)tnp. 

• These results allow one to reduce significantly the number of partial waves in time-

consuming 3N calculations.   

• The presented results show that in 3N reactions the T=3/2 components are overshadowed

by the dominant T=1/2 contributions.  

• It will be interesting to investigate reactions with three nucleons in which only T=3/2 

components contribute in the final state such as e.g. 3H + -
 n + n + n. That will allow

one to study the properties and the importance of 3NFs in the T=3/2 states.


