EW production at LHCb

HANG YIN

CENTRAL CHINA NORMAL UNIVERSITY ON BEHALF OF LHCb COLLABORATION PANIC 2017

Outline

Electroweak boson production at LHCb

- W/Z boson cross-section @ 8+13 TeV
- W/Z + jets @ 8 TeV
- $W + b\overline{b}$ and $W + c\overline{c}$ @ 8 TeV
- $Z \rightarrow b\overline{b}$ @ 8 TeV

LHCb detector

LHCb is a forward spectrometer initially designed for b physics Unique acceptance: $2 < \eta < 5$ Momentum resolution: 0.4% at 5 GeV, 0.6% at 100 GeV **Excellent track and vertex** reconstruction **Good PID separation Flexible trigger** trigger low momentum objects

JINST 3 (2008) S08005

LHC 13 TeV Kinematics

ATLAS/CMS **Probe PDFs** 10 LHCb CDF/D0 10 **HERA** LHCb detector provides access to Parton distribution Fixed Target 10^{6} functions (PDFs) 10 High Bjorken-x region W/Z• Low Bjorken-x region: unexplored by other experiments 10 Q^2 10 10 ATLAS y=2y = 6y = 4y=2=0 10 Muon HCal CMS 10 ECal Tracking 10⁻¹ LHCb 10 10^{-6} 10-5 10 10^{-3} 10 10 10^{-2} -5-3-22 3 5-40 4 -1 η

10⁰

 \boldsymbol{x}

 $W \rightarrow \mu \nu$ at 8 TeV

JHEP 01 (2016) 155

Agreement between measured results and NNLO calculations with different PDF sets

Uncertainties: dominated by luminosity and beam energy uncertainty

W/Z cross section ratios

Ratios (W^+/W^- , W/Z, 8/7 TeV) provides even more stringent tests on SM predictions

JHEP 01 (2016) 155

Z production at 13 TeV

Lepton final states $Z
ightarrow \mu \mu$ and Z
ightarrow ee

Event Selections:

- $\circ \,\, p_T > 20 \,\, {
 m GeV}$
- 2.0 < η < 4.5
- $^\circ~60 < M_{\mu\mu} < 120$ GeV, $M_{ee} > 40$ GeV
- High purity:
 - 99.2% for muon channel
 - 92.2% for electron channel

 $\sigma_Z = 194.3 \pm 0.9 \text{ (stat.)} \pm 3.3 \text{ (syst.)} \pm 7.6 \text{ (lumi.)} \text{ pb}$ (2. 0 < η < 4. 5, p_T > 20 GeV, 60 < M_Z < 120 GeV)

JHEP 09 (2016) 136

Z production at 13 TeV

Good agreement between electron and muon channel

Differential cross-section agree with predictions

- Rapidity distribution agrees well with NNLO QCD calculation
- $\circ p_T$, ϕ^* distributions agree better with PYTHIA8 than POWHEG predictions at low p_T

W/Z +jet production at 8 TeV

Important measurement to validate jet reconstruction at LHCb

```
LHCb standard jets: anti-kt with R = 0.5
```


Good agreement with POWHEG and aMC@NLO predictions

JHEP 05 (2016) 1

Data

POWHEG

aMC@NLO

 $\sigma(W^+j)$

 $\sigma(W^{-}j)$

 $\sigma(Z_j)$

 R_{WZ}

 R_{W^+Z}

 R_{W^-Z}

 $R_{w^{\pm}}$

 $\vdash \frown$

LHCb

 $\sqrt{s} = 8 \text{ TeV}$

 $A(W_i)$

W/Z +jet production at 8 TeV

Differential cross-section measurements are in agreement with POWHEG and aMC@NLO predictions

Main uncertainties: jet energy scale ~ 10%, W purity ~ 7 %

Jets heavy flavour identification

A good discrimination power is achieved!

J. Instrum. 10 (2015) P06013

$W + b\overline{b}/W + c\overline{c}$ production at 8 TeV

Phys. Lett. B767 (2017) 110

$W + b\overline{b}/W + c\overline{c}$ production at 8 TeV

Results in agreement with NLO predictions

(MCFM with CT10, interleaved with PYTHIA8)

Phys. Lett. B767 (2017) 110

$Z \rightarrow b\overline{b}$ production at 8 TeV

 $Z \rightarrow b\overline{b}$: two heavy flavour tagged jets

Selections:

- $p_T(jet1, 2) > 20 \text{ GeV}, 2.2 < \eta(jet1, 2) < 4.2$
- 45 $< M_{jj} < 165 \, GeV$

An additional balancing jet :

• $p_T(Z + \text{jet3})$ minimum to separate $Z \rightarrow b\overline{b}$ from QCD

UGB BDT is trained to separate $Z \rightarrow b\overline{b}$ from QCD

Input variables: 3-jets kinematic

Simultaneous fit to M_{jj} in signal, control region, to get signal yield.

$Z \rightarrow b\overline{b}$ production at 8 TeV

 $Z \rightarrow b\overline{b}$ model is taken from simulation, but a jet Energy Scale factor ($E_{\text{Data}}/E_{\text{MC}}$) is measured in the fit

• Validate the MC JES uncertainty (2%)

QCD model: Pearson IV distribution.

Uncertainty: heavy flavour tagging efficiency (~17%)

Measured result is compatible with aMC@NLO prediction

Measured:

$$\sigma(pp \to Z)\mathcal{B}(Z \to b\bar{b}) = 332 \pm 46(\text{stat.}) \pm 59(\text{syst.}) \text{ pb}$$

Prediction:
 $\sigma(pp \to Z)\mathcal{B}(Z \to b\bar{b}) = 272^{+9}_{-12}(\text{scale}) \pm 5(\text{PDFs}) \text{ pb}$

LHCb-PAPER-2017-024

Conclusions

LHCb detector has unique acceptance, EW production results are complementary to that of ATLAS and CMS

• Sensitive to high and low Bjorken-x (down to 10^{-5}) region

Production cross section measurements in the forward region

• Precision tests on the SM predictions

> Validate reconstruction techniques: electrons, jets, *b*-jets etc

>Many works are in progress for new exciting measurements

$W \rightarrow ev$ at 8 TeV

First measurement of W with electron final state at LHCb

- $W \rightarrow e \nu$ channel:
- $^{\circ}$ 2.0 < η < 4.5
- $^{\circ}$ p_T > 20 GeV
- Electron quality cuts
- **Purity: ~60%**

 $\sigma(W^{\pm} \to e^{\pm}\nu) = 1933.3 \pm 2.9(\text{stat.}) \pm 38.2(\text{syst.}) \pm 22.4(\text{lumi.}) \text{ pb}$ $(2.0 < \eta < 4.5, p_T > 20 \text{ GeV})$

JHEP 10 (2016) 030

Agreement between measured results and NNLO calculations with different PDF sets

Precision test of lepton universality: $\frac{B(W \rightarrow e\nu)}{B(W \rightarrow \mu\nu)} = 1.020 \pm 0.002 \pm 0.019$

 $W \rightarrow ev$ at 8 TeV

JHEP 10 (2016) 030

Impact of LHCb results on NNPDF3.1

LHCb W/Z production measurements has been used in NNPDF3.1

NNPDF3.1 NNLO, Q = 100 GeV

arXiv:1705.04468