

The high-energy photoproduction of light-quark pseudoscalar and scalar meson at GlueX

Zhenyu Zhang Wuhan University for the GlueX Collaboration

The 21st Particles & Nuclei International Conference Beijing, China 2017. 9. 2

OUTLINE

- Introduction
- 2 γ processes at GlueX
 - Photoproduction of pseudoscalar meson
- 4 γ processes at GlueX
 - Photoproduction of scalar meson
- Summary and outlook

Introduction

Meson photoproduction

- Almost 50 years at SLAC, DESY, and Cambridge
- Growing vigorously recently: JLab, ELSA, and MAMI
- In the low energy regime: provide constraints on "background" to baryon resonance extraction

In high regime provides insight into dominant production mechanism

See Alexander A. talk Light Meson Spectroscopy at GlueX

- The long-term aim at Gutter
 - Understand quark-gluon interactions
 - Search for exotic hybrid mesons

The high-energy photoproduction is a vital step to the final aim

Searching for Multiphoton final states is a component of a wide meson photoproduction project, among which we will focus on 2y and 4y photoproduction

Linearly polarized photons via coherent bremsstrahlung from diamond radiator off liquid hydrogen peaking at 9 GeV

2γ processes at GlueX Pseudoscalar mesons π^0/η **Photoproduction**

Exchange $\mathbf{J}^{\mathsf{PC}} \overset{\omega, \rho}{\overset{\omega, \rho}{\overset{\lambda}{, \rho}}}_{1^{--}: \omega, \rho} \overset{b, \rho}{\overset{\lambda}{, h}}_{, h}$ $= : \omega, \rho 1^{+-} : b, h$ $1^{\#=}:b,h$ $\frac{d\sigma}{dt} = \sigma_{\perp} + \sigma_{\parallel} = |\rho + \omega|^2 + |b + h|^2$ $\Sigma = \frac{|\omega + \rho|^2 - |h + b|^2}{|\omega + \rho|^2 + |h + b|^2}$ There are no previous measurements of the Σ asymmetry for $\gamma p \rightarrow \eta p$

with $E_v > 3 \text{ GeV}$

SLAC: PRD 4, 1937 (1971)

ω Backgrounds

- · Continuum background between π^0 and η is negligible.
- The largest background is $\gamma p \rightarrow \omega p$, $\omega \rightarrow \pi^0 \gamma$ with a missing photon. To get the background shape, we simulated this reaction then normalized to the ω leakage peak.
- Our exclusive measurements and cuts ensure very low backgrounds: for the eta the dilution is only 0.38%, while for the π⁰ it is negligible.

Beam Asymmetry: Method

Beam Asymmetry: Method

$$Y_{\perp} \propto N_{\perp} (1 + P_{\perp} \Sigma \cos 2\phi_{\text{proton}}) \phi_{\gamma} = 90^{\circ}$$
$$Y_{\parallel} \propto N_{\parallel} (1 - P_{\parallel} \Sigma \cos 2\phi_{\text{proton}}) \phi_{\gamma} = 0^{\circ}$$

 $rac{Y_{\perp}-F_{
m R}Y_{\parallel}}{Y_{\perp}+F_{
m R}Y_{\parallel}} = rac{(P_{\perp}+P_{\parallel})\Sigma\cos2\phi_{
m proton}}{2-(P_{\perp}-P_{\parallel})\Sigma\cos2\phi_{
m proton}}$

Repeat in bins of -t for both π^0 and η

$$F_{
m R} = rac{N_{\perp}}{N_{\parallel}}$$

Beam Asymmetry: Results

- Measured asymmetries consistent with previous SLAC data
- Our measured Σ asymmetries are close to 1, with little evidence of -t dependence
- Don't observe prominent dip in beam asymmetry at -t = 0.5 (GeV/c)² as seen in the cross section
- Our data are consistent with the JPAC and Laget calculations

```
PHYS REV C 95, 042201(R) (2017)
```


Exploring the nature of Light scalar mesons $a_0(980)$ and $f_0(980)$ photoproduction

with $\pi^0 \pi^0 / \pi^0 \eta$ as final states

can help to understand the chiral symmetry breaking mechanisms of QCD and the confinement of hadrons.

The status of the study of the scalar mesons Photoproduction

 Theoretical method: Regge-cut phenomenology, which is well understood in pion photoproduction.

Phys. Rev. C 93, 025203 (2016)

 CB-ELSA and CLAS collaborations made some measurements for a₀(980) and f₀(980) photoproduction respectively at lower energies.

Eur. Phys. J. A 38, 173 (2008)

Phys. Rev. Lett. 102, 102001 (2009)

Published statistics for $a_0(980)$ and $f_0(980)$ photoproduction is low and in a limited energy range.

•

J. Gunter et al., E852 Collaboration, https://arxiv.org/abs/hep-ex/0001038v1

Moment analysis for di-pseudoscalarmeson photoproduction

The moments of the di-pion angular distribution defined as

$$< Y_{LM} > (E_{\gamma}, t, M_{\pi\eta}) = \sqrt{4\pi} \int d\Omega_{\pi} \frac{d\sigma}{dt dM_{\pi\eta} d\Omega_{\pi}} Y_{LM}(\Omega_{\pi})$$

Ω_π: the polar and azimuthal angles of the π⁰flight direction in the π⁰η helicity rest frame

 Y_{LM} : is the spherical harmonic of degree Land order M

Measured angular distribution corrected by the detector acceptance

Extraction of the moments via likelihood fit of experimental data

Two approaches:

parametrization with amplitudes/moments

FIG. 4 (color online). Moments of the di-pion angular distribution in $3.2 < E_{\gamma} < 3.4$ GeV and $-t = 0.45 \pm 0.05$ GeV² (black dots), $-t = 0.65 \pm 0.05$ GeV² (red squares) and $-t = 0.95 \pm 0.05$ GeV² (blue trianges). The error bars include both the statistical and systematic uncertainties as explained in the text.

PHYSICAL REVIEW D 80, 072005 (2009)

Results can be used as the input of $a_0(980)$ beam asymmetry analysis

Summary and Outlook

- A broad meson photoproduction project at GlueX is under way, including beam asymmetries, cross sections and spin density matrix elements analysis.
- The linearly polarized photon beam asymmetry Σ for π^0/η photoproduction have measured.
- A detailed survey of the multi-photon processes is performed deeply.
- The moment analysis for di-pseudoscalar-meson photoproduction and the beam asymmetry studies of scalar mesons are in progress.

Back up

GlueX Detector

Detector resolutions:

Search for exotic hybrids

Exidence exists for J^{PC}=1⁻⁺ amplitudes, but interpretation clearly not conclusive

Search for a pattern of hybrid states in many final states

	Approximate	J^{PC}	Final States
	Mass (MeV)		
π_1	1900	1^{-+}	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}, 5\pi, \eta 3\pi^{\dagger}, \eta'\pi^{\dagger}$
η_1	2100	1^{-+}	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η_1'	2300	1^{-+}	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$
b_0	2400	0^{+-}	4π
h_0	2400	0^{+-}	$\omega\pi\pi^{\dagger}, \eta 3\pi, KK\pi\pi$
h'_0	2500	0^{+-}	$KK\pi\pi^{\dagger}, \ \eta 3\pi$
b_2	2500	2^{+-}	$4\pi, \ \eta\pi\pi^{\dagger}$
h_2	2500	2^{+-}	$\omega\pi\pi^{\dagger}, \ 3\pi^{\dagger}$
h'_2	2600	2^{+-}	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}$

Spring 2016: Detector commissioning and engineering runs

Spring 2017: The first physics runs

GlueX-I [low-intensity]: 2017-18

Event Selection

- Loose timing cuts
- **Proton requirements:**
 - p_{proton} > 250 MeV
 - **Originates from target region**
 - **CDC dE/dx contour**
 - yp→pyy cuts

Δφ, Missing Mass squared, Missing (E_γ>4.0GeV), only two photons[§]_g constructed fissing mass of f proton, coherent beam energy (8.4 Ev < 9.0 Ge ♥) g⁴⁰

23

