

Hidden-Charm Decays: An Elegant Probe for Internal Structure

Muhammad Naeem Anwar PhD Student ITP-CAS & UCAS, Beijing

In Collaboration with

Yu Lu (Bonn Uni.) & Prof. Bing-Song Zou

Phys. Rev. D 95, 114031 (2017)

Particles and Nuclei International Conference 2017 (PANIC2017), Beijing

University of Chinese Academy of Sciences

Outline

- HQSS Violation in Heavy Quarkonium Transitions
- Motivation
- Effective Model & Results
- Assignments for Charmonium-like States
- Summary

What is QCD of $\psi(2S, 1D) \rightarrow J/\psi\eta(\pi^0)$?

 \Box Well-known formalism for hadronic transitions \rightarrow QCD multipole expansion

K. Gottfried, PRL 40, 598 (1977) T.-M Yan, PRD 22, 1652 (1980)

Y.-P Kuang, Front. Phys. China 1, 19 (2006)

- $\square Multi gluon exchange \rightarrow hadronize to light hadron(s)$
- \Box Gluons are supposed to be soft \rightarrow wavelength much larger than $Q\bar{Q}$
- Emitted light hadron are predominantly of lower momenta

Chiral Effective Lagrangians

 \Box First simplification to QCDME \rightarrow EFT of QCD with soft gluons

g

- Soft exchange approximation (SLA), limited momenta of gluon
 Assumptions
 - $\rightarrow Q\bar{Q}$ is well separated to consider string-like
 - \rightarrow light meson momentum not very large

Successfully describe the transitions among lower quarkonia

NREFT Formalism

To incorporate the intermediate meson loops effects F.-K. Guo et. al. PRL 103 082003 (2009) & PRD 83, 034013 (2011)

Find sizeable contribution from loops in

■ Non-perturbative effects, in principle, can also play role in the decays of higher $J^{PC} = 1^{--}$ states

 $\psi' \rightarrow I/\psi \eta(\pi^0)$

 $\Box \quad \text{For } \psi(4S, 3D, 5S, 4D, 6S, 5D) \rightarrow J/\psi\eta(\pi^0)$

 \rightarrow decay momentum lies in relativistic regime

Potential need for a suitable theory which can incorporates the hadronic transition with large decay momenta

Why $J^{PC} = 1^{--}$ Charmonia ?

- $\Box J^{PC} = 1^{--} \text{ have direct access } @ e^+e^- \text{ colliders}$
- Physics of production of $J^{PC} = 1^{--}$ is well-established
- Rich & Precise Spectrum
- Several non-conventional states

Y(4260), *Y*(4360), *Y*(4390), *Y*(4660), ...

□ Y(4260) → We argued that it has sizeable component of $D_1\overline{D}$ molecule through D wave coupling Y. Lu, MNA, B.-S. Zou, arXiv:1705.00449 [hep-ph]

Effective Model

Motivated by NJL model

$$\mathcal{L}_{\text{NJL}} = \frac{1}{2} g_s \sum_{a=0}^{N_c} [(\bar{\psi} \lambda^a \psi)^2 + (\bar{\psi} \lambda^a i \gamma^5 \psi)^2]$$

Ψ

 p_2

Coupling of heavy quark with light scalar and pseudoscalar d-o-f
 Modify four-quark vertex → two quark + light d-o-f

$$\mathcal{L}_{I} = g(\bar{\psi}\psi\langle\sigma\rangle + \bar{\psi}i\gamma^{5}\psi\langle\eta\rangle) -$$

Overall Coupling

Г

 \Box < σ > and < η > are SU(3) singlets

□ Data is available for η transitions of higher $J^{PC} = 1^{--}$

□ Test the model for $\psi \to J/\psi\eta$ $\psi = \psi(2S, 1D, 3S, 2D, 4S)$

$$\begin{split} \mathcal{L}_{A \to BC} &= 2\pi k \frac{E_B E_C}{m_A} \sum_{m_{J_B}, m_{J_C}} \int d\Omega_B |\mathcal{M}^{m_{J_A} m_{J_B} m_{J_C}}|^2, \\ \mathcal{M}^{m_{J_A} m_{J_B} m_{J_C}} &= g \frac{i}{2m_c} \int d^3 p_1 \phi_A(\vec{p}_1) \phi_B^*(\vec{p}_1 - x_B \vec{P}_B) \\ \times \langle 1' | \vec{\sigma} | 1 \rangle \cdot (\vec{p}_1 - \vec{p'}_1) \cdot \langle 2 | \delta_{ss'} | 2' \rangle. \end{split}$$

Vanish at HQ limit $m_O
ightarrow \infty$

 p_2

S – D Mixing & Wavefunctions

 $R_{n_r l}(p) = \sqrt{\frac{2n_r!}{\Gamma(n_r + l + \frac{3}{2})}} \beta^{-(l + \frac{3}{2})} e^{-p^2/2\beta^2} L_{n_r}^{l + \frac{1}{2}}(p^2/\beta^2)$

 \square Standard mixing \rightarrow used in literature to reproduce Γ_{ee}

Y.-B. Ding et. al. PRD 44, 3562 (1993) & J. L Rosner, PRD 64, 094002 (2001)

$$\psi_{\text{phys}} = \cos\theta |n^3 S_1\rangle + \sin\theta |(n-1)^3 D_1\rangle$$

 $\psi'_{\text{phys}} = -\sin\theta |n^3 S_1\rangle + \cos\theta |(n-1)^3 D_1\rangle$

 $\rightarrow \theta \approx -10 \sim -13 \& \theta \approx +26 \sim +30$

□ Large mixing such as $\theta \approx 34$ [Badalian, PAN (2009)] & $\theta \approx 40$ [Liu, PRD (2004)] is not favored by this study

 \Box To compute overlap, wavefunctions is key ingredient \rightarrow prefer SHO wf

$$\psi_{n_r lm}(\vec{p}) = R_{n_r l}(p) \mathcal{Y}_l^m(p,\theta,\varphi)$$

 Qualitatively, SHO wf are same as true wf

 Useful in producing analytic results

9

Results	(i)		$m_c = 1.$	50 GeV $\beta = \beta$	0.40 GeV	g = 0.80	$ \theta = 13^{\circ}$ 114031 (2017)
$\Box \psi(nS)$ -	→ J /ψη	&ψ((r	(n-1)D)	$\rightarrow J/\psi\eta$			
	State	$n^{2S+1}L_J$	$\Gamma_{\rm total}$ [18]	$\mathcal{B}(\psi \to J/\psi \eta)$ [18]	$\Gamma^{\rm th}_{\psi \to J/\psi \eta}$	$\Gamma^{\exp}_{\psi \to J/\psi \eta} [18]$	
	$\psi(3686)$	$2^{3}S_{1}$	0.296 ± 0.008	$(3.36 \pm 0.05)\%$	0.010	0.010 ± 0.001	
	$\psi(3770)$	$1^{3}D_{1}$	27.2 ± 1.0	$9\pm4\times10^{-4}$	0.025	0.025 ± 0.011	
	$\psi(4040)$	$3^{3}S_{1}$	80 ± 10	$5.2\pm0.7\times10^{-3}$	0.347	0.416 ± 0.076	
	$\psi(4160)$	$2^{3}D_{1}$	70 ± 10	$<8\times10^{-3}$	0.204	$< 0.560 \pm 0.080$	

 $< 6 \times 10^{-3}$

0.425

 $< 0.372 \pm 0.120$

For $\psi(4160)$ & $\psi(4415)$ only upper limits available

 62 ± 20

 $4^{3}S_{1}$

 $\psi(4415)$

Results (iii); β dependence

Results (iv); θ dependence

□ Due to sinusoidal behavior, Γ could be the same for two different values of mixing angle

Provide constraints on the mass of unknown higher vector charmonia

 \rightarrow upper bound

Predictions (ii); $\psi(4160) \rightarrow h_c \eta \otimes \psi(4415) \rightarrow h_c \eta$ Coupling of spin-singlet P wave lowest $c\bar{c}$ with initial S and D wave $c\bar{c}$ found to be much smaller than J/ψ $\frac{\Gamma(\psi(4415) \rightarrow h_c(1P)\eta)}{\Gamma(\psi(4415) \rightarrow J/\psi\eta)} = 6.736 \times 10^{-2}$ $\frac{\Gamma(\psi(4160) \to h_c(1P)\eta)}{\Gamma(\psi(4160) \to J/\psi\eta)} = 7.887 \times 10^{-2}$ Also made predictions for initial mass dependence width for $\psi(3D, 4D, 5S) \rightarrow h_c \eta$ $\psi(4D/5S), \theta=0^{\circ}$ ψ(4D/5S), θ=13° 1.2 1.2 1.0 1.0 ----- S 0.8 0.8 — D 0.0 I(MeV) 0.6 L(MeV) 0.4 0.4 0.2 0.2 0.0 0.0 4.5 4.9 4.5 4.9 5.0 4.4 4.6 4.7 4.8 5.0 4.4 4.6 4.7 4.8 Mass(GeV) Mass(GeV) 15

Assignment for *Y* States

- □ Y(4360) & Y(4660) are observed at Belle in ISR $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- Theoretical interpretations

 $Y(4360) \rightarrow 3D \ c\bar{c}$ state G.-J Ding et. al. PRD 77, 014033 (2008) D. Molina et. al. PRD 95, 094021 (2017)

 $Y(4660) \rightarrow 5S \ c\bar{c}$ state

J. Segovia et. al. PRD 78, 114033 (2008)
 G.-J Ding et. al. PRD 77, 014033 (2008)

- □ Assign 3*D* to *Y*(4360) and compute *Y*(4360) → $J/\psi\eta$
- $\square Mixing is considered b/w 3D \& 4S$
- □ Experimental measurement requires Γ_{ee} to get abs. $\Gamma[Y(4360) \rightarrow J/\psi\eta]$

 $\mathcal{B}(Y \to J/\psi \eta) \cdot \Gamma^Y_{e^+e^-}$ Puzzle for me???

Pick up quark model estimates for $\Gamma_{ee}[Y(4360)]$ for pure 3D & with admixture of 4S

Y Assignments: Results (i)

 $I Y(4360) \to J/\psi\eta$

					$\Gamma^{\mathrm{th}}_{Y \to J/\psi\eta}$			$\Gamma_{Y \to J/\psi \eta}^{\exp}$	
State	$n^{2S+1}L_J$	$\Gamma_{\rm total}$	$\mathcal{B}(Y \to J/\psi \eta)$	$\theta = 0^{\circ}$	$\theta=13^\circ$	$\theta = 34^{\circ}$	$\theta = 0^{\circ}$	$\theta=34^\circ$	
Y(4360)	$3^{3}D_{1}$	74 ± 18 [18]	$\frac{6.8}{\Gamma_e+_e-}$ [64]	0.047	0.016	$1.0 imes 10^{-3}$	< 0.963	< 0.799	
Y(4390)	$3^{3}D_{1}$	139.5 ± 16.1 [60]	_	0.083	0.028	1.6×10^{-3}	_	-	
Y(4660)	5^3S_1	48 ± 15 [18]	$\frac{0.94}{\Gamma_e+_e-}$ [64]	0.057	0.070	0.077	< 0.046	< 0.116	

- \bigcirc $\psi(3D)$ assignment of Y(4360) describes data well in all three cases
- □ *Y*(4390), a new state from BESIII in $\pi^+\pi^-h_c$, looking forward to have measurements on its hadronic transitions

□ *Y*(4660), for pure $\psi(5S)$, $\theta = 0 \rightarrow$ larger width than corresponding exp. upper limit

Summary

- Motivated by NJL model, we developed an effective model to create light meson(s) in heavy quarkonium transitions
- With small S D mixing among $J^{PC} = 1^{--}$ successfully describe the corresponding available data
- Made several predictions for $\psi(3D, 4S, 4D, 5S, 5D, 6S) \rightarrow J/\psi\eta \& h_c(1P)\eta$
- Studied spectroscopic quantum numbers for *Y*(4360), *Y*(4390) and *Y*(4660)
- Based on the current exp. data, Y(4360) is a potential candidate for $\psi(3D)$ in presented effective model
- □ Update is available from BESIII for $Y(4360) \rightarrow h_c(1P)\eta \leftarrow$ study ongoing
- $\Box \quad \psi \rightarrow J/\psi \pi^+ \pi^-$ and $\psi \rightarrow h_c \pi^+ \pi^-$ study also ongoing, stay tune!

Thanks for Your Attention

