Recent results from KLOE-2

The 21st Particles and Nuclei International Conference

Beijing 03.09 2017

Wojciech Krzemień

On behalf of the KLOE-2 collaboration

Outline

- → KLOE-2 detector and the DA Φ NE Φ -factory,
- Measurement of the running coupling constant $\alpha_{OED}(s)$,
- → Dalitz plot analysis of $\eta \rightarrow \pi^+ \pi^- \pi^0$,
- → Searches for dark forces,
- → Tests of discrete symmetries with entangled kaons,
- → Summary

KLOE-2 detector and DAΦNE Φ-factory

DAΦNE (Double Annular Φ Factory for Nice Experiments)

- $e^+ e^-$ collider $\sqrt{s} = M_{\Phi} = 1019.4 \text{ MeV}$
 - 2 interaction regions
 - e⁺ e⁻ separated rings
 - 105 + 105 bunches spaced by 2.7 ns

- DAΦNE upgrade (2008): new interaction scheme
 - Large beam crossing angle
 - Crab waist sextupoles

KLOE detector

• <u>Calorimeter</u>

- 98% coverage full solid angle
- $\sigma_{E} / E = 5.7\% / \sqrt{E(GeV)}$
- $\sigma_{T} = 57 \text{ ps} / \sqrt{E(\text{GeV})} \oplus 100 \text{ ps}$
- Barrel + 2 end-caps:
 - Pb/scintillating fiber readout by 4880 PMTs

Magnetic field B = 0.52 T

Drift Chamber

- Low-mass gas mixture: 90% Helium + 10% isobutane
- $\delta p_{\perp} / p_{\perp} < 0.4\% \ (\theta > 45^{\circ})$
- $\sigma_{xy} = 150 \ \mu m$; $\sigma_z = 2 \ mm$
- 12582 cells
- Stereo geometry
- 4m diameter, 3.3m long

KLOE detector

Calorimeter •

- 98% coverage full solid angle
- $\sigma_{E} / E = 5.7\% / \sqrt{E(GeV)}$
- $\sigma_{T} = 57 \text{ ps} / \sqrt{E(\text{GeV})} \oplus 100 \text{ ps}$
- Barrel + 2 end-caps:

- KLOE data taking campaign 1999-2005 •
 - ~ 2.5 fb⁻¹
 - ~ 260 pb⁻¹ off-peak

KLOE-2 Upgrade

- LYSO Crystal w SiPM
- low angle γ's (down to 10°)

- Tungsten / Scintillating Tiles w SiPM
- Quadrupole coverage for K₁ decays

W. Krzemien, PANIC

• 4 layers of C-GEM

• better vertex reconstruction and track parameters

- Scintillator hodoscope +PMTs
- e+e--taggers for γγ-physics

calorimeters LYSO+SiPMs at \sim 1 m from IPe+e--taggers for $\gamma\gamma$ -physics 7

KLOE-2 data taking

- KLOE-2 has started a new data campaign in November 2014
- All KLOE-2 detectors operational
- DAΦNE luminosity: peak = 2.2x10³² & daily delivered >10 pb⁻¹

KLOE-2 data taking

- KLOE-2 has started a new data campaign in November 2014
- All KLOE-2 detectors operational
- DAΦNE luminosity: peak = 2.2x10³² & daily delivered >10 pb⁻¹

Physics with KLOE-2

KLOE-2 rich physics program

Eur. Phys. J C68 (2010) 619 +

KLOE-2 WORKSHOP @1GeV (https://agenda.infn.it/conferenceDisplay.py?confId=11722)

- Kaon physics
- *үү* physics
- Light meson spectroscopy
- Dark matter searches
- Hadronic Physics below 1 GeV

- Discrete symmetries test
- High precision tests of CPT and QM
- $\gamma\gamma \rightarrow \pi^0$
- Study of $\Gamma(S/P \rightarrow \gamma \gamma)$
- P transition form factor
- Properties of scalar/vector mesons
- Rare η decays
- η' physics
- Light bosons
- Leptophobic searches
- ALPs

W. Krzemien,] b)

 $\Delta t = t_1 - t_2$

Measurement of the QED coupling constant $\alpha(s)_{QED}$

Figure from http://w3.lnf.infn.it/the-variable-constant/?lang=en

$\alpha(s)_{QED}$ below 1 GeV

- $\boldsymbol{\alpha}_{_{QED}}$ is a running parameters due to Vacuum Polarization
- "Vacuum Polarization" function $\Pi(q^2)$ can be absorbed by redefinition of an effective charge

$$e^2 \rightarrow e^2(q^2) = \frac{e^2}{1 + (\Pi(q^2) - \Pi(0))} \quad \Delta \alpha = -\Re e \left(\Pi(q^2) - \Pi(0) \right)$$

$$\alpha(q^2) = \frac{\alpha(0)}{1 - \Delta \alpha}$$

large momentum transfer (Q²) ---

$\alpha(s)_{QED}$ below 1 GeV

- $\boldsymbol{\alpha}_{_{QED}}$ is a running parameters due to Vacuum Polarization
- "Vacuum Polarization" function $\Pi(q^2)$ can be absorbed by redefinition of an effective charge

$$e^{2} \rightarrow e^{2}(q^{2}) = \frac{e^{2}}{1 + (\Pi(q^{2}) - \Pi(0))} \quad \Delta \alpha = -\Re e \left(\Pi(q^{2}) - \Pi(0) \right)$$
$$\alpha(q^{2}) = \frac{\alpha(0)}{1 - \Delta \alpha}$$

non-perturbative QCD

QED

large momentum transfer (Q²) →

negligible at lower energies

Phys. Lett. B 767 (2017) 485-492

$\alpha(s)_{QED}$ from 0.6 to 0.975 GeV

• Excellent agreement with NLO theory (PHOKARA MC) with VP inside (H. Czyz, A. Grzelinska, J.H. Kuhn, G. Rodrigo, Eur. Phys. J. C 39 (2005) 411.)

Hadronic contribution

 $\Delta \alpha_{had}$ obtained by dispersive approach with 0.1% accuracy (F. Jegerlerhner):

$$\Delta \alpha_{had}(s) = -(\frac{\alpha s}{3\pi}) \operatorname{Re} \int_{m_{\pi}^2}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\epsilon)}$$

W. Krzemien, PANIC 2017

Hadronic contribution

 $\Delta \alpha_{had}$ obtained by dispersive approach with 0.1% accuracy (F. Jegerlerhner):

$$\Delta \alpha_{had}(s) = -(\frac{\alpha s}{3\pi}) \operatorname{Re} \int_{m_{\pi}^2}^{\infty} ds' \, \frac{R(s')}{s'(s'-s-i\epsilon)}$$

W. Krzemien, PANIC 2017

Dalitz plot analysis of $\eta \rightarrow \pi^+ \pi^- \pi^0$

The $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot distribution

- $\eta \rightarrow \pi^+ \pi^- \pi^0$ isospin violating process (mainly via strong interaction)
- Constraint in the light quark masses

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} \quad \text{with } \hat{m} = \frac{1}{2} (m_{d} + m_{u})$$

- Description of the low energy strong interactions (ChPT)
- Dalitz density distribution in η -rest frame parametrized as a polynomial expansion around X = Y = 0:

 $|A(X,Y)|^{2} \approx 1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3} + gX^{2}Y + hXY^{2} + lX^{3} + ...$

- where: $X = \sqrt{3} \frac{T_{\pi^+} T_{\pi^-}}{Q_{\eta}}$; $Y = \frac{3T_{\pi^0}}{Q_{\eta}} 1$; $Q_{\eta} = T_{\pi^+} + T_{\pi^-} + T_{\pi^0} = m_{\eta} 2m_{\pi^+} m_{\pi^0}$ (odd powers of X must be zero for C-invariance)
- Previous precision measurement KLOE (JHEP05 (2008) 006) L= 450 pb⁻¹ ==> 1.34 x 10⁶ events

JHEP 1605 (2016) 019

The $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot distribution

JHEP 1605 (2016) 019

The $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot distribution

a	$b \cdot 10$	$d\cdot 10^2$	$f \cdot 10$	$g\cdot 10^2$	c,e,h,l	$\chi^2/{ m dof}$	Prob
-1.104 ± 0.003	1.420 ± 0.029	7.26 ± 0.27	1.54 ± 0.06	0	0	385/366	0.24
-1.095 ± 0.003	1.454 ± 0.030	8.11 ± 0.33	1.41 ± 0.07	-4.4 ± 0.9	0	360/365	0.56

Experiment	-a	b	d	f	-g
Gormley(70) [16]	1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04	_	_
Layter(73) [17]	1.080 ± 0.014	0.03 ± 0.03	0.05 ± 0.03	_	_
CBarrel(98) [18]	1.22 ± 0.07	0.22 ± 0.11	0.06(fixed)	_	_
KLOE(08) [19]	$1.090 \pm 0.005 ^{+0.019}_{-0.008}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006^{+0.007}_{-0.016}$	$0.14 \pm 0.01 \pm 0.02$	_
WASA(14) [20]	1.144 ± 0.018	$0.219 \pm 0.019 \pm 0.047$	$0.086 \pm 0.018 \pm 0.015$	0.115 ± 0.037	_
BESIII(15) [21]	$1.128 \pm 0.015 \pm 0.008$	$0.153 \pm 0.017 \pm 0.004$	$0.085 \pm 0.016 \pm 0.009$	$0.173 \pm 0.028 \pm 0.021$	_

Charge asymmetries:

$$A_{LR} = (-5.0 \pm 4.5^{+5.0}_{-11}) \cdot 10^{-4}$$
$$A_Q = (+1.8 \pm 4.5^{+4.8}_{-2.3}) \cdot 10^{-4}$$
$$A_S = (-0.4 \pm 4.5^{+3.1}_{-3.5}) \cdot 10^{-4}.$$

C-violating parameters consistent with zero \rightarrow sensitive test using integrated charge asymmetries

JHEP 1605 (2016) 019

The $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot distribution

a	$b \cdot 10$	$d\cdot 10^2$	$f \cdot 10$	$g\cdot 10^2$	c,e,h,l	$\chi^2/{ m dof}$	Prob
-1.104 ± 0.003	1.420 ± 0.029	7.26 ± 0.27	1.54 ± 0.06	0	0	385/366	0.24
-1.095 ± 0.003	1.454 ± 0.030	8.11 ± 0.33	1.41 ± 0.07	-4.4 ± 0.9	0	360/365	0.56

Experiment	-a	b	d	f	-g
Gormley(70) [16]	1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04	_	_
Layter(73) [17]	1.080 ± 0.014	0.03 ± 0.03	0.05 ± 0.03	_	_
CBarrel(98) [18]	1.22 ± 0.07	0.22 ± 0.11	0.06(fixed)	_	_
KLOE(08) [19]	$1.090 \pm 0.005 ^{+0.019}_{-0.008}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006 ^{+0.007}_{-0.016}$	$0.14 \pm 0.01 \pm 0.02$	_
WASA(14) [20]	1.144 ± 0.018	$0.219 \pm 0.019 \pm 0.047$	$0.086 \pm 0.018 \pm 0.015$	0.115 ± 0.037	_
BESIII(15) [21]	$1.128 \pm 0.015 \pm 0.008$	$0.153 \pm 0.017 \pm 0.004$	$0.085 \pm 0.016 \pm 0.009$	$0.173 \pm 0.028 \pm 0.021$	_

- Statistic uncertainties improved by a factor of ~2
- Systematic uncertainties improved up to a factor of three with respect to KLOE08
- g parameter extracted for the first time

C-violating parameters consistent with zero \rightarrow sensitive test using integrated charge asymmetries

$$\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$$

Searches for dark forces

Dark Forces searches with KLOE

- A new low energy gauge interaction mediated by a neutral light mass vector particle, usually named the U boson, with a small kinetic mixing ϵ (<10⁻³) with SM
- Dark vector boson U which mixes with photon:

$$\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$$

- Many searches in the recent years
- KLOE measurements in the mass range 5 MeV $< m_{_{\rm II}} < 980$ MeV

− $Φ \rightarrow ηU$ with U $\rightarrow e^+ e^-$	Phys. Lett B 706 (2012) 251-255 Phys. Lett B 720 (2013) 111-115
$- e^+ e^- \rightarrow U\gamma \text{ with } U \rightarrow \mu^+ \mu^-$	Phys. Lett B 736 (2014) 459-464
- e ⁺ e ⁻ → Uh' with h' → invisible	Phys.Lett. B747 (2015) 365-372
$- e^+ e^- \rightarrow U\gamma \text{ with } U \rightarrow e^+ e^-$	Phys.Lett. B750 (2015) 633-637
$- e^+ e^- \rightarrow U\gamma \text{ with } U \rightarrow \pi^+ \pi^-$	Phys.Lett. B757 (2016) 356-361

• Search for dilepton resonances

Dark Forces searches with KLOE

• KLOE

- (1) Dalitz decayPLB 720 (2013)
- (2) U $\rightarrow \mu^{+}\mu^{-}$ PLB 736 (2014)
- (3) U $\rightarrow e^+e^-$ PLB 750 (2015)
- $\mathbf{U} \to \pi^+ \pi^-$ *PLB* 757 (2016)
- $U \rightarrow \mu^+ \mu^-$ full statistics- Preliminary
- $U \rightarrow \mu^+ \mu^-$ combined with $U \rightarrow \pi^+ \pi^-$ Preliminary
- BABAR PRL 113 201801 (2014)
- WASA PLB 726 (2013)
- HADES PLB 731 (2014)
- APEX PRL 107 (2011)
- A1/MAMI PRL 112 (2014)
- NA48/2 PLB 746 (2015)

- The current limits exclude g-2 favoured regions
- A further factor of 2 in sensitivity expected from KLOE-2 experiment with respect to full KLOE data

Phys.Lett. B747 (2015) 365-372

Higgsstrahlung process

• $m_{h'} > 2m_{II}$

with decays: $e^+e^- \rightarrow Uh'$ with $h' \rightarrow UU$ thus 6l, 2π +4l, 6π in the final state

• $m_{h'} < 2m_{TT}$ where h' is "invisible":

- Life time of the dark Higgs boson
- $\varepsilon = 10^{-3}$
- $\alpha_{D} = \alpha_{em}$
- $m_{h'.U} \sim 100 \text{ MeV}$
- $\tau > 5 \ \mu s \rightarrow \beta \gamma c \tau > 100 \ m \rightarrow h'$ would be invisible up to $\varepsilon \sim 10^{-2}$ to 10^{-1} depending on m

W. Krzemien, PANIC 2017

Phys.Lett. B747 (2015) 365-372

Higgsstrahlung process

Combined results on- and off- peak data:

W. Krzemien, PANIC 2017

Discrete symmetry tests with kaon pairs

K_s semileptonic charge asymmetry

$$K_{s} \text{ and } K_{L} \text{ semileptonic charge asymmetry}$$

$$A_{s,L} = \frac{\Gamma(K_{s,L} \to \pi^{-}e^{+}v) - \Gamma(K_{s,L} \to \pi^{+}e^{-}v)}{\Gamma(K_{s,L} \to \pi^{-}e^{+}v) + \Gamma(K_{s,L} \to \pi^{+}e^{-}v)} = 2\Re \varepsilon \pm 2\Re \delta - 2\Re y \pm 2\Re x_{-}$$

$$PTV \text{ in } \Delta S = \Delta Q \quad \Delta S \neq \Delta Q \text{ decays}$$

$$A_{s,L} \neq 0 \text{ signals } CP \text{ violation}$$

$$A_{s} \neq A_{L} \text{ signals } CP \text{ violation}$$

$$A_{L} = (3.322 \pm 0.058 \pm 0.047) \times 10^{-3}$$

$$KTEV \text{ PRL88,181601(2002)}$$

$$A_{s} = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

$$KLOE \text{ PLB } 636(2006) 173$$

$$Data \text{ sample: } L = 410 \text{ pb}^{-1}$$

$$A_{s} = A_{L} = 4\Re \delta + \Re x_{-}$$

$$A_{s} = A_{L} = 4\Re \delta + \Re x_{-}$$

$$M_{s} = (0.4 \pm 2.5) \times 10^{-3}$$

$$CPT \text{ viol.}$$

$$CPT \text{ viol.}$$

$$CPT \text{ viol.}$$

$$CPT \text{ viol.}$$

K_s semileptonic charge asymmetry

 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical)

It will improve the CPT test ($Im\delta$) using Bell-Steinberger relationship

with KLOE-2 data: $\delta A_{S}(stat) \rightarrow \sim 3 \times 10^{-3}$

T and CPT tests in transition

Reference	T-conjug.	CP-conjug.	CPT-conjug.
$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$	$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$
$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$\bar{K}^0 \to K$	$\mathrm{K}_{-} \to \bar{\mathrm{K}}^{0}$
$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$
$\bar{K}^0 \to K$	$\mathrm{K}_{-} \to \bar{\mathrm{K}}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \to \mathrm{K}^{0}$

 $R_1(\Delta t) = P\left[\mathrm{K}^0(0) \to \mathrm{K}_+(\Delta t)\right] / P\left[\mathrm{K}_+(0) \to \mathrm{K}^0(\Delta t)\right]$

 $R_2(\Delta t) = P\left[\mathrm{K}^0(0) \to \mathrm{K}_-(\Delta t)\right] / P\left[\mathrm{K}_-(0) \to \mathrm{K}^0(\Delta t)\right]$

 $R_3(\Delta t) = P\left[\bar{\mathbf{K}}^0(0) \to \mathbf{K}_+(\Delta t)\right] / P\left[\mathbf{K}_+(0) \to \bar{\mathbf{K}}^0(\Delta t)\right]$

 $R_4(\Delta t) = P\left[\bar{\mathbf{K}}^0(0) \to \mathbf{K}_-(\Delta t)\right] / P\left[\mathbf{K}_-(0) \to \bar{\mathbf{K}}^0(\Delta t)\right]$

 $R_{1,CPT}(\Delta t) = P\left[K_{+}(0) \to \bar{K}^{0}(\Delta t)\right] / P\left[K^{0}(0) \to K_{+}(\Delta t)\right]$

 $R_{2,CPT}(\Delta t) = P\left[\mathbf{K}^{0}(0) \to \mathbf{K}_{-}(\Delta t)\right] / P\left[\mathbf{K}_{-}(0) \to \bar{\mathbf{K}}^{0}(\Delta t)\right]$

 $R_{3,CPT}(\Delta t) = P\left[\mathrm{K}_{+}(0) \to \mathrm{K}^{0}(\Delta t)\right] / P\left[\bar{\mathrm{K}}^{0}(0) \to \mathrm{K}_{+}(\Delta t)\right]$

 $R_{4,CPT}(\Delta t) = P\left[\bar{\mathbf{K}}^{0}(0) \to \mathbf{K}_{-}(\Delta t)\right] / P\left[\mathbf{K}_{-}(0) \to \mathbf{K}^{0}(\Delta t)\right]$

 $K_{+}K_{-}$ pure CP + and - states

Neglecting direct CP/CPT violation:

 $\langle K_-|K_+\rangle=0$

Any deviation from R =1 violation of T/CPT symmetry

J. Bernabeu, A.D.D., P. Villanueva JHEP 10 (2015) 139, NPB 868 (2013) 102

W. Krzemien, PANIC 2017

CPT

L = 1.7 fb⁻¹ T and CPT tests in transition

$$\begin{split} R_{2,\mathrm{CPT}}^{\mathrm{exp}}(\Delta t) &\equiv \frac{I(\ell^-, 3\pi^0; \Delta t)}{I(\pi\pi, \ell^-; \Delta t)} \\ R_{4,\mathrm{CPT}}^{\mathrm{exp}}(\Delta t) &\equiv \frac{I(\ell^+, 3\pi^0; \Delta t)}{I(\pi\pi, \ell^+; \Delta t)} \end{split}$$

CPT test with the double ratio:

$$\frac{R^{\mathrm{exp}}_{2,\mathrm{CPT}}(\Delta t \gg \tau_S)}{R^{\mathrm{exp}}_{4,\mathrm{CPT}}(\Delta t \gg \tau_S)} = 1 - 8 \Re \delta - 8 \Re x_-$$

L = 1.7 fb⁻¹ T and CPT tests in transition

Summary

The KLOE experiment has provided among others results on:

- → Measurement of the QED coupling constant $\alpha_{OED}(s)$,
- → Dalitz plot analysis of $\eta \rightarrow \pi^+ \pi^- \pi^0$,
- → Searches for dark forces,
- → Tests of discrete symmetries

Several analyses with the KLOE and KLOE-2 data sets are in progress

- → New data taking period is ongoing:
 - → expected data sample of at least **5 fb**⁻¹ (by the end of March 2018)
 - → Upgraded detector → **improved sensitivity**

Thank you for your attention

Backup slides

 $K^{}_L$ tagged by $K^{}_S \to \pi^+ \pi^- \text{ vertex at IP}$

$\rm K_{S}$ tagged by $\rm K_{L}$ interaction in EmC

Neutral kaon interferometry

T and CPT tests in transition

- Entanglement to prepare the state
- Decay of orthogonal "CP" states for filtering:
- CP and T conjugated Processes: $K \rightarrow K^0$ and $\overline{K}^0 \rightarrow K$

One can separate the tests of CPT and T

J. Bernabeu, A.D.D., P. Villanueva JHEP 10 (2015) 139, NPB 868 (2013) 102

DAFNE upgrade

Crabbed waist scheme at DAΦNE

Crab Waist Scheme: beam crossing at large angle, sextuple correction

Implemented in DAFNE and tested in 2008 on SIDDARTHA experiment (no magnetic field)

In KLOE B=0.52T require specific tuning and background control

Taken from A. Selce's talk SIF 2016

KLOE-2 Upgrade

- KLOE-2 new data taking campaign started in November 2014
- It will collect more than 5 fb⁻¹ up to March 2018
- New detectors fully operational
- Tagging system LET & HET
 - e+e--taggers for γγ-physics
- CCALT & QCALT
 - 2 new calorimeters
 - CCALT for low angle γ 's (down to 10°)
 - Quadrupole coverage for K_L decays
- Inner Tracker
 - 4 layers of C-GEM
 - better vertex reconstruction and track parameters

High Energy Tagger (HET)

- HET stations located approximately at 11m from IP after bending dipoles
- Strong energy-trajectory correlation
 - Scintillating hodoscope + PMTs
- $\sigma_t = 550(1)ps$

Scattered e^{\pm} of E > 400 MeV escape beam pipe after first bending dipole of DA Φ NE \rightarrow spectrometer

- fast feedback on machine operation
- Rates dominated by single arm Bhabha's

$$R_{_{HET}} \sim R_{_{trig}} (\alpha L + \beta I^2)$$

$\alpha(s)_{\rm QED}$ between 600 MeV and 975 MeV

Phys. Lett. B 767 (2017) 485-492

- Analysis performed with data sample of $L = 1.7 \text{ fb}^{-1}$
- Event selection: 2 opposite charge tracks + undetected photons (small angle)
- Excellent agreement with NLO theory (PHOKARA MC) with VP inside (H. Czyz, A. Grzelinska, J.H. Kuhn, G. Rodrigo, Eur. Phys. J. C 39 (2005) 411.)

$\alpha(s)_{QED}$ between 600 MeV and 975 MeV

 $\Delta \alpha_{_{had}}$ obtained by dispersive approach using data in time-like region provided by F. Jegerlerhner (with 0.1% accuracy)

$$\Delta \alpha_{had}(s) = -(\frac{\alpha s}{3\pi}) \operatorname{Re} \int_{m_{\pi}^{2}}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\epsilon)}$$

W. Krzemien, PANIC 2017

$\alpha(s)_{QED}$ hadronic component behaviour

Taken from G.Venanzoni's Phi2Psi 2017

Event selection

Event Selection: Small Angle (SA)

Muon tracks at large angles $50^{\circ} < \theta_{\mu} < 130^{\circ}$

Photons at small angles $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

Photon momentum from kinematics:

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

Taken from G.Venanzoni's Phi2Psi 2017

The $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot distribution

• Dalitz plot parameters:

JHEP 1605 (2016) 019

Fit/set#	a	$b \cdot 10$	$d\cdot 10^2$	$f \cdot 10$	$g \cdot 10^2$	c,e,h,l	χ^2/dof	Prob
(1)	-1.095 ± 0.003	1.454 ± 0.030	8.11 ± 0.32	1.41 ± 0.07	-4.4 ± 0.9	free	354/361	0.60
(2)	-1.104 ± 0.002	1.533 ± 0.028	6.75 ± 0.27	0	0	0	1007/367	0
(3)	-1.104 ± 0.003	1.420 ± 0.029	7.26 ± 0.27	1.54 ± 0.06	0	0	385/366	0.24
(4)	-1.095 ± 0.003	1.454 ± 0.030	8.11 ± 0.33	1.41 ± 0.07	-4.4 ± 0.9	0	360/365	0.56
(5)	-1.092 ± 0.003	1.45 ± 0.03	8.1 ± 0.3	1.37 ± 0.06	-4.4 ± 0.9	0	369/365	0.43
(6)	-1.101 ± 0.003	1.41 ± 0.03	7.2 ± 0.3	1.50 ± 0.06	0	0	397/366	0.13

Experiment	t	-a	Ь	d	f	-g
Gormley(70)	16	1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04	200	0.00 0.00 0.000
Layter(73)	17	1.080 ± 0.014	0.03 ± 0.03	0.05 ± 0.03	2.00	<u> </u>
CBarrel(98)	18	1.22 ± 0.07	0.22 ± 0.11	0.06(fixed)	-	—
KLOE(08)	19	$1.090 \pm 0.005 ^{+0.019}_{-0.008}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006 ^{+0.007}_{-0.016}$	$0.14 \pm 0.01 \pm 0.02$	o , −o ,
WASA(14)	20	1.144 ± 0.018	$0.219 \pm 0.019 \pm 0.047$	$0.086 \pm 0.018 \pm 0.015$	0.115 ± 0.037	<u></u>
BESIII(15)	21	$1.128 \pm 0.015 \pm 0.008$	$0.153 \pm 0.017 \pm 0.004$	$0.085 \pm 0.016 \pm 0.009$	$0.173 \pm 0.028 \pm 0.021$	-

The $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot distribution

Experiment		-a	b	d	f	-g
Gormley(70)	[16]	1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04	-	-
Layter(73)	[17]	1.080 ± 0.014	0.03 ± 0.03	0.05 ± 0.03	-	-
CBarrel(98)	[18]	1.22 ± 0.07	0.22 ± 0.11	0.06(fixed)	_	-
KLOE(08)	[19]	$1.090 \pm 0.005 \substack{+0.019 \\ -0.008}$	$0.124 \pm 0.006 \pm 0.010$	$0.057 \pm 0.006 \substack{+0.007 \\ -0.016}$	$0.14 \pm 0.01 \pm 0.02$	-
WASA(14)	[20]	1.144 ± 0.018	$0.219 \pm 0.019 \pm 0.047$	$0.086 \pm 0.018 \pm 0.015$	0.115 ± 0.037	-
BESIII(15)	[21]	$1.128 \pm 0.015 \pm 0.008$	$0.153 \pm 0.017 \pm 0.004$	$0.085 \pm 0.016 \pm 0.009$	$0.173 \pm 0.028 \pm 0.021$	_
Calculations	8					
ChPT LO	[10]	1.039	0.27	0	0	-
ChPT NLO	[10]	1.371	0.452	0.053	0.027	-
ChPT NNLO	[10]	1.271 ± 0.075	0.394 ± 0.102	0.055 ± 0.057	0.025 ± 0.160	-
dispersive	[22]	1.16	0.26	0.10	-	_
simplified dis	p [5]	1.21	0.33	0.04	_	-
NREFT	[12]	1.213 ± 0.014	0.308 ± 0.023	0.050 ± 0.003	0.083 ± 0.019	0.039 ± 0.002
UChPT	[11]	1.054 ± 0.025	0.185 ± 0.015	0.079 ± 0.026	0.064 ± 0.012	-

 $\eta \rightarrow \pi + \pi - \pi^0$ DP parameters

Comparison of results for Q

The $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot distribution

- New independent measurement (JHEP 1605 (2016) 019)
 - 1.7 fb⁻¹ ==> 4.48 x 10⁶ events
 - New analysis scheme
 - Overall efficiency 38%
 - Fit including also the g parameter

$e^+e^- \rightarrow U\gamma \text{ with } U \rightarrow \pi^+\pi^-$

Phys.Lett. B757 (2016) 356-361

two opposite sign charged tracks $50^{\circ} < \theta_{\pi} < 130^{\circ}$

W. Krzemien, PANIC 2017

Search for CP-violating
$$K_s \rightarrow \pi^0 \pi^0 \pi^0$$

 $3 \pi^0$ is a pure CP=-1 state . Any observation of $K_s \rightarrow \pi^0 \pi^0 \pi^0$ is a sign of CP violation

SM prediction BR(K $\rightarrow \pi^{0}\pi^{0}\pi^{0}$) = 1.9 * 10⁻⁹

$$\eta_{000} = \frac{\left\langle \pi^{0} \pi^{0} \pi^{0} | T | K_{S} \right\rangle}{\left\langle \pi^{0} \pi^{0} \pi^{0} | T | K_{L} \right\rangle} = \varepsilon + \varepsilon'_{000}$$

Direct CP-violating term

Direct CP-violating term expected $<< \varepsilon$

Best upper limit by KLOE with 1.7 fb⁻¹PLB 723 (2013) 54 $BR(K_s \rightarrow 3\pi^0) < 2.6 \times 10^{-8}$ @ 90% CL $|\eta_{000}| < 0.0088$ @ 90% CL

KLOE-2 data: L \approx 300 pb⁻¹ analyzed "K_L crash" (K_L in the EMC) + 6 prompt photons Analysis based on γ counting and kinematic fit in the $2\pi^0$ and $3\pi^0$ hypothesis Main bckg: K_S $\rightarrow 2\pi^0$ (4 prompt photons), also used for normalization

Search for CP-violating $K_s \rightarrow \pi^0 \pi^0 \pi^0$

SIGNAL

BACKGROUND

Search for CP-violating $K_s \rightarrow \pi^0 \pi^0 \pi^0$

SIGNAL

BACKGROUND

