

Measurement of exclusive hadronic cross sections with the BaBar detector and implications on the g-2 of the muon

Fabrizio Bianchi

INFN & University of Torino

On behalf of the BaBar collaboration

PANIC 2017, Beijing, September 1-5, 2017

Outline

- g-2 of the muon
- ISR analysis at BaBar
- Recent results:
 - $-\pi^+\pi^-\pi^0\pi^0$
 - $-\pi^+\pi^-\eta$
 - K_SK_Lπ⁰, K_SK_Lη, K_SK_Lπ⁰π⁰
 - $K_{s}K^{+}\pi^{-}\pi^{0}$, $K_{s}K^{+}\pi^{-}\eta$
- Conclusions

a_{μ} of the Muon (1)

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

Dirac equation predicts g=2 for point like fermions

Higher orders contributions lead to non zero $a_{\!\mu}$

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadronic}$$

 a_{μ} is sensitive to New Physics

$$a_{\mu} = a_{\mu}^{SM} + a_{\mu}^{NP}$$

a_{μ} of the Muon (2)

Experiments have achieved an amazing precision and are still improving

```
E821@BNL (1997-2001):
```

G.W. Bennett *et al.*, Phys. Rev. D **77**, 072003 (2006) $a_{\mu} = (11\ 659\ 209.1\pm 6.3) \times 10^{-10} (0.54\ ppm)$

```
E989 (a) FNAL (2017-...):
F. Gray et al., arXiv: 1510.003
a_u = \dots (0.14 \text{ ppm})
```

E34 @ J-PARC: T. Mibe *et al.,* Chin. Phys. C 34 (2010) 745 $a_{\mu} = \dots (0.1 \text{ ppm})$

DHMZ , TAU 2016, arXiv:1612.02743

a_{μ} of the Muon (3)

Comparison with measurement (x 10^{-10})				
	$a_{\mu}^{\ total-SM}$	11659181.7 ± 4.2		
	$a_{\mu}^{BNL-E821}$	11659209.1 ± 6.3		2.
	Data - SM	27.4 ± 7.6 (3.6ơ)		

- Need more precise measurements of a_{μ}
- 2. Need to improve accuracy of SM prediction

Individual SM contributions (\times 10⁻¹⁰)

a_{μ}^{QED}	11658471.895 ± 0.008	
a_{μ}^{EW}	15.4 ± 0.1	
$a_{\mu}^{had,LO-VP}$	692.6 ± 3.3	
$a_{\mu}^{had,HO-VP}$	-8.63 ± 0.09	
$a_{\mu}^{had,LbLs}$	10.5 ± 2.6	

Uncertainties from hadronic contributions dominate

$$a_{\mu}$$
 of the Muon (4)

The hadronic leading order vacuum polarization contribution is calculated using dispersion relations from experimental data on the total cross section of the e^+e^- annihilation into hadrons

$$a^{ ext{had}, ext{LO}}_{\mu} = rac{m^2_{\mu}}{12\pi^3} \int_{s_{ ext{th}}}^{\infty} ds \; rac{1}{s} \hat{K}(s) \sigma_{ ext{had}}(s) \quad \sqrt{q}_{q} \wedge \quad \Leftrightarrow \stackrel{e^-}{\underset{e^+}{\longrightarrow}} \sqrt{q}_{\overline{q}}$$

Lower energies (E < 2 GeV) give dominant contribution

- To get $\sigma^0{}_{had}$ sum cross sections of measured exclusive channels and use isospin relations for missing channels
- Experimental options are:
 - perform a direct scan (require tunable beam energy)
 - take advantage of radiative return (ISR events)

The BaBar Detector

BaBar collected data at the PEP-II asymmetric collider at SLAC between 1999 and 2008.

For ISR analysis, a data sample of 469 fb⁻¹ collected at (or near) a c. m. energy of 10.58 GeV (at or near the Y(4S) resonance).

ISR Method at BaBar

The mass spectrum of the hadronic system in the reaction $e^+e^- \rightarrow f \gamma$ is related to the cross section of the reaction $e^+e^- \rightarrow f$.

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \sigma_0(s(1-x)), \quad x = 0$$

The ISR photon is emitted predominantly along the beam axis. The produced hadronic system is boosted against the ISR photon. Due to limited detector acceptance the mass region below 2 GeV can be studied only with detected photon.

Tagged ISR Analysis at BaBar

- Fully exclusive measurement
 - Photon with E_{CM} > 3 GeV, which is assumed to be the ISR photon
 - All final hadrons are detected and identified
- Large-angle ISR forces the hadronic system into the detector fiducial region
 - A weak dependence of the detection efficiency on dynamics of the hadronic system (angular and momentum distributions in the hadron rest frame) ⇒ small model uncertainty
 - A weak dependence of the detection efficiency on hadron invariant mass ⇒ measurement near and above threshold with the same selection criteria.
- Kinematic fit with requirement of energy and momentum balance
 - excellent mass resolution
 9/0 packground suppression

Can access a wide range of energy in a single experiment: from threshold to ~5 GeV

22 final states studied 20 published papers

BaBar Tagged ISR Analysis cross sections, nb 01 cross sections, nb π*π`γ $\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ π*π'π*π' π*π'π*π'π⁰ $2\pi^{+}2\pi^{-}2\pi^{0}$ 3π⁺3π⁻ K^{*0}K⁺⁻π⁻⁺ K⁺K^{*}γ K⁺K[−]K⁺K[−] K⁺K⁻π⁰ K⁺K⁻π⁰π⁰ K⁺K⁻π⁺π⁻ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ K⁺K⁻π⁺π⁻π⁺π⁻ K_sK^{+*}π^{**} ppbar 10⁻¹ 10⁻² 0.5 1.5 2.5 3.5 3 2E, GeV 0.5-2% syst. errors 4-15% syst. errors

PANIC 2017

Before the BaBar Measurements (Presented in This Talk)

BaBar measurements presented in this talk:

- $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
- π⁺π⁻η
- K_SK_Lπ⁰, K_SK_Lη, K_SK_Lπ⁰π⁰
- $K_{s}K^{+}\pi^{-}\pi^{0}$, $K_{s}K^{+}\pi^{-}\eta$

Channel	$a_{\mu}^{ m had,LO} \left[10^{-10} ight]$
$\frac{1}{\pi^0 \gamma}$	$4.42\pm 0.08\pm 0.13\pm 0.12$
$\eta\gamma$	$0.64\pm 0.02\pm 0.01\pm 0.01$
$\pi^+\pi^-$	$507.80 \pm 1.22 \pm 2.50 \pm 0.56$
$\pi^+\pi^-\pi^0$	$46.00\pm0.42\pm1.03\pm0.98$
$2\pi^+2\pi^-$	$13.35\pm0.10\pm0.43\pm0.29$
$\pi^+\pi^-2\pi^0$	$18.01 \pm 0.14 \pm 1.17 \pm 0.40$
$2\pi^+ 2\pi^- \pi^0 \ (\eta \ \text{excl.})$	$0.72\pm 0.04\pm 0.07\pm 0.03$
$\pi^+\pi^-3\pi^0$ (η excl., from isospin)	$0.36 \pm 0.02 \pm 0.03 \pm 0.01$
$3\pi^+3\pi^-$	$0.12\pm 0.01\pm 0.01\pm 0.00$
$2\pi^+ 2\pi^- 2\pi^0 \ (\eta \ \text{excl.})$	$0.70 \pm 0.05 \pm 0.04 \pm 0.09$
$\pi^+\pi^-4\pi^0$ (η excl., from isospin)	$0.11\pm 0.01\pm 0.11\pm 0.00$
$\eta \pi^+ \pi^-$	$1.15\pm 0.06\pm 0.08\pm 0.03$
$\eta\omega$	$0.47 \pm 0.04 \pm 0.00 \pm 0.05$
$\eta 2\pi^+ 2\pi^-$	$0.02\pm 0.01\pm 0.00\pm 0.00$
$\eta \pi^+ \pi^- 2 \pi^0$ (estimated)	$0.02\pm 0.01\pm 0.01\pm 0.00$
$\omega\pi^0~(\omega ightarrow\pi^0\gamma)$	$0.89 \pm 0.02 \pm 0.06 \pm 0.02$
$\omega \pi^+ \pi^-, \omega 2 \pi^0 ~(\omega o \pi^0 \gamma)$	$0.08\pm 0.00\pm 0.01\pm 0.00$
$\omega \; ({ m non-} 3\pi, \pi\gamma, \eta\gamma)$	$0.36 \pm 0.00 \pm 0.01 \pm 0.00$
K^+K^-	$21.63 \pm 0.27 \pm 0.58 \pm 0.36$
$K^0_S K^0_L$	$12.96 \pm 0.18 \pm 0.25 \pm 0.24$
$\phi \; ({ m non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05 \pm 0.00 \pm 0.00 \pm 0.00$
$K\overline{K}\pi$ (partly from isospin)	$2.39 \pm 0.07 \pm 0.12 \pm 0.08$
$K\overline{K}2\pi$ (partly from isospin)	$1.35 \pm 0.09 \pm 0.38 \pm 0.03$
$KK3\pi$ (partly from isospin)	$-0.03\pm0.01\pm0.02\pm0.00$
$\phi\eta$	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$
$\omega K \overline{K} \; (\omega o \pi^0 \gamma)$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$
PANIC 2017	11

$e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

- BABAR results are most precise and covers wider energy range
- Systematic uncertainty is 3.1% in the 1.2-2.7 GeV energy range. Dominated by background subtraction.
- Contribution to a_{μ} for the range 1.02<E_{CM}<1.8 GeV is measured to be
 - 17.5 ± 0.6 (stat+syst)] x 10⁻¹⁰
 - 3.4% precision
- Previous result including the preliminary BaBar data from 2007 is
 - 18.0 ± 1.2 (stat+syst)] × 10⁻¹⁰
 - 6.7% precision

 $e^+ e^- \rightarrow \pi^+ \pi^- \eta$

The BaBar results in the $\eta \rightarrow \gamma\gamma$ mode agrees well with the previous measurements, but is more precise and covers wider energy range

Systematic uncertainty near the cross section maximum, 1.35-1.80 GeV, is 4.5%. Dominated by background subtraction.

 $a_{\mu}^{had LO}(Js < 1.8 \text{ GeV}) = (1.18 \pm 0.06) \cdot 10^{-10} \text{ (this analysis)} \\ 1.15 \pm 0.10 - \text{(before this measurement)}$

Cross section (nb)

PANIC 2017

e⁺ e⁻ → KKππ (1)

There are six combinations in the $e^+e^- \to KK\pi\pi$ processes . Four were measured previously

e⁺ e⁻ → KKππ (2)

Phys. Rev. D 89, 092002 (2014)

Phys. Rev. D 95, 052001 (2017)

 $e^+ e^- \rightarrow K_S K_I \pi^0 \pi^0$

First measurement

- Systematic uncertainty is 25% at the peak, grows to 60% at 2 GeV. Dominated by background subtraction.
- Dominant K*(892)K π intermediate PANIC 201**ștate**.

Phys. Rev. D 95, 092005 (2017)

 $e^+ e^- \rightarrow K_S K^+ \pi^- \pi^0$

- First measurement
- Systematic uncertainty is 6-7% below 3 GeV. Dominated by background subtraction.

• 11 intermediate states - dominant are $K^*(892)K\pi$, $K_SK^+\rho^-(770)$

Phys. Rev. D 95, 092005 (2017)

- First measurement
- Systematic uncertainty is 12-19% below 3 GeV. Dominated by background subtraction
- Dominant K*(892)Kη intermediate state.

Phys. Rev. D 95, 052001 (2017)

 $e^+ e^- \rightarrow K_S K_I \pi^0, K_S K_I \eta$

- First measurement
- Systematic uncertainty is 10% near the peak, grows to 30% at 3.0 GeV. Dominated by backgrond subtraction.
- 9/0 Dominant K*(892)Kπ
 intermediate state

- First measurement
- Systematic uncertainty is 25% at the peak, grows to 60% at 2 GeV. Dominated by background subtraction

$e^+ e^- \rightarrow KK\pi$, $KK\pi\pi$: all modes

• All modes have now been measured by BABAR

- · KK π is about 12% of the total cross section for E_{cm} = 1.65 GeV
- · KK $\pi\pi$ is about 25% of the total cross section for E_{cm} = 2.0 GeV
- · Precision on (g-2)/2 improved (no reliance on isospin)

 $a_{\mu}(KK\pi) = (2.45 \pm 0.15) \ 10^{-10}$ 2.39 ± 0.16 $a_{\mu}(KK\pi\pi) = (0.85 \pm 0.05) \ 10^{-10}$ 1.35 ± 0.39

Summary

- Precise low-energy e^+e^- hadronic cross section data are needed to obtain an accurate SM prediction for $a_{\mu}^{had,LO-VP}$
- Recent results on the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$, KK π , KK $\pi\pi$ cross sections from BaBar reduce the uncertainty on $a_{\mu}^{had,LO-VP}$
- However the exclusive data are incomplete in the region 1.6<E<2.0 GeV.
 - There is still no experimental information on final states like $\pi^+\pi^ \pi^0\eta$, $\pi^+\pi^-\eta\eta$, $\pi^+\pi^-\pi^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0\pi^0\eta$, 7π ...
- New results are expected from BaBar, as well as from BES III, SND, CMD-3
 - On a longer term, Belle II can have a significant impact

Backup

BaBar ISR References

 $e^+e^- \rightarrow \pi^+\pi^-$

 $e^+e^- \rightarrow K^+K^-$

 $e^+e^- \rightarrow K_S K_L, K_S K_L \pi^+\pi^-, K_S K_S \pi^+\pi^-, K_S K_S K^+ K^$ $e^+e^- \rightarrow p \text{ anti-}p$

 $\begin{array}{l} e^+e^- \rightarrow \Lambda \text{ anti-}\Lambda, \Sigma^0 \text{ anti-}\Sigma^0, \Lambda \text{ anti-}\Sigma^0 \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ e^+e^- \rightarrow K^+K^-\eta, K_S K^+\pi^- K^+K^-\pi^0 \\ e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^- \end{array}$

 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-, K^+K^-\pi^0\pi^0, K^+K^-K^+K^-$

 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0, 2(\pi^+\pi^-)\eta, K^+K^-\pi^+\pi^-\pi^0, K^+K^-\pi^+\pi^-\eta$ $e^+e^- \rightarrow 3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0), K^+K^-2(\pi^+\pi^-)$

Phys. Rev. Lett. 103 231801 (2009) Phys. Rev. D 86, 032013 (2012) Phys. Rev. D 88, 032013 (2013) Phys. Rev. D 92, 072008 (2015) Phys. Rev. D 89, 092002 (2014) Phys. Rev. D 73, 012005 (2006) Phys. Rev. D 87, 092005 (2013) Phys. Rev. D 88, 072009 (2013) Phys. Rev. D 76, 092006 (2007) Phys. Rev. D 70, 072004 (2004) Phys. Rev. D 77, 092002 (2008) Phys. Rev. D 71, 052001 (2005) Phys. Rev. D 85, 112009 (2012) Phys. Rev. D 74, 091103 (2006) Phys. Rev. D 76, 012008 (2007) Phys. Rev. D 86, 012008 (2012) Phys. Rev. D 76, 092005 (2007) Phys. Rev. D 73, 052003 (2006)

a_{μ} of the Muon (2)

T. Teubner, TAU 2016

QED contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al
Hadronic contribu	tion	
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11
NLO hadronic	-9.8 (0.1) ×10 ⁻¹⁰	HLMNT11
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰	
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy

(Numbers taken from HLMNT11, arXiv:1105.3149)

$e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

Main Selection Requirements

- exactly 2 charged tracks
- \geq 5 photons
- $E_{\gamma}^{
 m lab} > 0.05 \,
 m GeV$
- $|M_{\pi^0}^{
 m reco} M_{\pi^0}^{
 m PDG}| < 0.03 \, {
 m GeV}$
- $E_{\gamma_{\rm ISR}} > 3\,{
 m GeV}$
- 6C kinematic fit: $\chi^2_{2\pi 2\pi^0\gamma} < 30$
- reject other hypotheses
- Muon and Kaon PID

$$e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$$

Simulated background channels:

Main issue: background from $e^+e^- \rightarrow \pi^+\pi^- 3\pi^0$

$e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

$M(\pi^{+}\pi^{-}2\pi^{0})(\text{GeV/c}^{2})$	< 1.2	1.2 - 2.7	2.7 - 3.2	> 3.2
Tracking eff.	0.8%	0.8%	0.8%	0.8%
γ eff.	0.4%	0.4%	0.4%	0.4%
$2\pi^0$ eff.	2.0%	2.0%	2.0%	2.0%
$\chi^2_{4\pi\gamma}$ eff.	0.4%	0.4%	0.4%	0.4%
Resonances in AfkQED	0.4%	0.4%	0.4%	0.4%
Mass res.	0.3%	0.3%	0.3%	0.3%
FSR	1.0%	1.0%	1.0%	1.0%
NLO ISR	0.5%	0.5%	0.5%	0.5%
ISR luminosity	1.0%	1.0%	1.0%	1.0%
continuum Bkg	1.0%	1.0%	1.0%	2.0%
ISR Background	1-100%	1.0%	6.0%	6.0%
Kaon PID	0.5%	0.5%	0.5%	0.5%
Muon PID	0%	0%	0%	2.0%
total	3 - 100%	3.1%	6.7%	7.2%

$e^+ e^- \rightarrow \pi^+ \pi^- \eta$

Source	Correction, %	Systematic	
		uncertainty, %	
Selection criteria		2.5	
Background subtraction			
$m_{\pi^+\pi^-\eta} < 1.35$		9	
$1.35 < m_{\pi^+\pi^-\eta} < 1.80$		2	
$1.80 < m_{\pi^+\pi^-\eta} < 2.50$		5	
$2.50 < m_{\pi^+\pi^-\eta} < 3.10$		10.5	
$3.10 < m_{\pi^+\pi^-\eta} < 3.50$		11	
Trigger and filters	-1.5	1.6	
η reconstruction	-2	1.0	
ISR photon efficiency	-1.1	1.0	
Track reconstruction	-1.1	1.0	
Radiative correction		1.0	
Luminosity		1.0	
Total			
$m_{\pi^+\pi^-\eta} < 1.35$	-5.7	10	
$1.35 < m_{\pi^+\pi^-\eta} < 1.80$	-5.7	4.5	
$1.80 < m_{\pi^+\pi^-\eta} < 2.50$	-5.7	6.5	
$2.50 < m_{\pi^+\pi^-\eta} < 3.10$	-5.7	11	
$3.10 < m_{\pi^+\pi^-\pi^-} < 3.50$	-5.7	12	

9/03/17

_

 $e^+ e^- \rightarrow K_S K^+ \pi^- \pi^0$

Source	Correction (%)	Systematic uncertainty (%)
π^0 reconstruction	+2.0	1.0
K^{\pm}, π^{\pm} reconstruction	+1.6	2.0
K_s^0 reconstruction	+1.1	1.0
PID efficiency	0.0	2.0
χ^2 selection	+3.7	4.6
Background subtraction		2.5, < 2.0 GeV
		4.2, 2.0-3.0 GeV
		10.0, > 3.0 GeV
Model acceptance		0.5
Luminosity and Rad.Corr.		1.4
Total	+8.6	6.3, < 2.0 GeV
		7.1, 2.0-3.0 GeV
		11.5, > 3.0 GeV