Study of $D_s^+ \rightarrow K^{(*)0} e^+\nu_e$ at BESIII

Zhang Yu for the BESIII Collaboration (PANIC 2017)

University of Chinese Academy of Sciences
zhangyu213@mails.ucas.ac.cn

Signal Events of $D_s^+ \rightarrow K^{(*)0} e^+\nu_e$

- To find the best photon candidate for the D_s^+ candidate, all the residual photons are looped and constrained to the nominal mass of D_s^+ under the hypothesis that photon comes from the tag side, i.e. D_s^+ or the signal side, i.e. D_s^+. The combination with low χ^2 is kept.

Introduction

- $D_s^+ \rightarrow K^{(*)0} e^+\nu_e$ are Cabibbo-suppressed processes.
- Current branching fractions (BFs) of these decays are limited to the statistics. Significant improvement is expected with the dataset collected with BESIII.

BESIII and BEPCII

- The Beijing Spectrometer (BESIII) detects e^+e^- collisions in the double-ring collider Beijing Electron Positron Collider (BEPCII).
- D_s^+ dataset is accumulated in 2016, based on $D_s^- D_s^+$ $\rightarrow \pi^+ \pi^0 D_s^0$ production at $\sqrt{s} = 4.180$ GeV. The luminosity is about $L = 3.18$ fb$^{-1}$, so about 6M D_s^+ events are produced.

Analysis Method

- A double tag (DT) analysis method is employed, where a single tag (ST) D^+_s is reconstructed with the hadronic decays, as the tag side, while the SL candidates could be reconstructed in the signal side.
- The hadronic form factor F_{γ} is determined to be $f_1(0) = 0.720 \pm 0.084 \pm 0.011$ for $D_s^+ \rightarrow K^{(*)0} e^+\nu_e$ by fixing the partial decay ratio. The form factor ratios r_1 and r_2 for the decay $D_s^+ \rightarrow K^{(*)0} e^+\nu_e$ are measured to be $r_1 = 2.83 \pm 0.34 \pm 0.16$ and $r_2 = 0.77 \pm 0.29 \pm 0.07$, respectively. Here, the first errors are statistical and the second systematic.

Table 1: ST yields in data

<table>
<thead>
<tr>
<th>Decay</th>
<th>$\sigma^{D_s^+ \rightarrow K^{(*)0} e^+\nu_e}_T$</th>
<th>$\sigma^{D_s^+ \rightarrow K^{(*)0} e^+\nu_e}_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_s^+ \rightarrow K^+ e^+\nu_e$</td>
<td>0.68 \pm 0.41 \pm 0.06</td>
<td>0.68 \pm 0.41 \pm 0.06</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^0 e^+\nu_e$</td>
<td>0.71 \pm 0.44 \pm 0.07</td>
<td>0.71 \pm 0.44 \pm 0.07</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^{*+} e^+\nu_e$</td>
<td>0.73 \pm 0.46 \pm 0.08</td>
<td>0.73 \pm 0.46 \pm 0.08</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^{*0} e^+\nu_e$</td>
<td>0.75 \pm 0.48 \pm 0.09</td>
<td>0.75 \pm 0.48 \pm 0.09</td>
</tr>
</tbody>
</table>

References

Acknowledgements

The BESIII collaboration thanks the staff of BESIII and the BEPCII Computing Center for their support. The work is supported by the corresponding institutes and programs, which are not listed here.