Latest T2K Neutrino Oscillation Results

Xianguo LU/ 卢显国 University of Oxford
on behalf of the T2K Collaboration
Particles and Nuclei International Conference 2017 (PANIC2017)
Beijing, 2 September 2017
Outline

• Neutrino oscillations and the T2K experiment
• Joint oscillation analysis with ν_μ, ν_μ, ν_τ, and ν_e samples
• Summary
Neutrino Oscillations

\[c_{ij} = \cos \theta_{ij} \]
\[s_{ij} = \sin \theta_{ij} \]

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} e^{-i \delta_{CP}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

\[\theta_{ij} \neq 0, \delta_{CP}-\text{phase irreducible} \rightarrow \text{leptonic CP violation} \]
Neutrino Oscillations

Neutrino (flavor) oscillations depend on mixing angles, δ_{CP}-phase and mass differences.

$$c_{ij} = \cos \theta_{ij}$$

$$s_{ij} = \sin \theta_{ij}$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$\theta_{ij} \neq 0$, δ_{CP}-phase irreducible \rightarrow leptonic CP violation

With a ν_μ beam

$$P(\nu_\mu \rightarrow \nu_e) \simeq \sin^2 2\theta_{13} \sin^2 \Delta_{32} \left(\sin^2 \theta_{23} - \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \delta_{CP} \sin \Delta_{21} \right)$$

$$P(\nu_\mu \rightarrow \nu_\mu) \simeq 1 - \sin^2 2\theta_{23} \sin^2 \Delta_{32}$$

“CP-odd term”

$\Delta_{ij} \equiv \frac{\Delta m^2_{ij}L}{4E}$

$\Delta m^2_{ij} \equiv m^2_i - m^2_j$

* neglecting matter effects
Neutrino Oscillations

Neutrino (flavor) oscillations depend on mixing angles, δ_{CP}-phase and mass differences.

$$c_{ij} = \cos \theta_{ij}$$
$$s_{ij} = \sin \theta_{ij}$$

$$\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} e^{-i \delta_{\text{CP}}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{\text{CP}}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}$$

$\theta_{ij} \neq 0$, δ_{CP}-phase irreducible \rightarrow leptonic CP violation

With a $\bar{\nu}_\mu$ beam flip sign

$$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \simeq \sin^2 2\theta_{13} \sin^2 \Delta_{32} \left(\sin^2 \theta_{23} + \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \delta_{\text{CP}} \sin \Delta_{21} \right)$$

$$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) = P(\nu_\mu \rightarrow \nu_\mu) \text{ by CPT symmetry}$$

CP-odd term in appearance channels allow extraction of δ_{CP} using neutrino and anti-neutrino beams, up to $\pm 30\%$ effect at T2K

$\Delta_{ij} \equiv \frac{\Delta m^2_{ij} L}{4E}$

$\Delta m^2_{ij} \equiv m^2_i - m^2_j$

* neglecting matter effects
The T2K Experiment

Diagram by Kirsty Duffy

Super-Kamiokande

Japan Proton Accelerator Research Complex (J-PARC)

Mt. Noguchi-Goro
2,924 m

Mt. Ikeno-Yama
1,360 m

1,700 m below sea level

295 km

Neutrino Beam

To SK

ND280

ν

μ

π, K

Graphite target

30 GeV proton beam
The T2K Experiment

Charge selection on neutrino parents
→ \(\nu \) or \(\bar{\nu} \) mode
Crossed arrays of 9-ton iron-scintillator detectors
- Monitor neutrino beam stability and beam spatial profile
- estimate beam flux uncertainty
- stand-alone cross-section measurements
The T2K Experiment

Diagram by Kirsty Duffy
T2K off-axis near detector (ND280)
T2K off-axis near detector (ND280)

Tracker:
- FGD: Fine-Grained Detector
 1. plastic scintillator C_8H_8 target
 2. $C_8H_8 + H_2O$ target
- Time Projection Chamber (TPC)

- constrain beam flux and cross section for oscillation analysis
- stand-alone neutrino interaction measurements
T2K far detector: Super-Kamiokande

- 50 kt water-Cherenkov
- 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector
 → time and amplitude of Cherenkov light

Source: http://www-sk.icrr.u-tokyo.ac.jp/sk/detector/image-e.html
T2K far detector: Super-Kamiokande

- 50 kt water-Cherenkov
- 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector
 → time and amplitude of Cherenkov light

\[
\begin{align*}
\nu_\mu, \bar{\nu}_\mu, \nu_e, \bar{\nu}_e & \quad \mu/\mu^+/e/e^+ \\
\rightarrow & \quad \text{detect propagated } \nu \text{ from J-PARC} \\
\rightarrow & \quad E_\nu \text{ rec. from } \mu/e \text{ kinematics}
\end{align*}
\]
SK event reconstruction

NEW since 2016 summer:
New reconstruction algorithm: fiTQun (likelihood-based)
Re-optimizing fiducial volume: ~30% increase in effective statistics
SK event reconstruction

NEW since 2016 summer:
New reconstruction algorithm: fiTQun (likelihood-based)
Re-optimizing fiducial volume: \(~30\%\) increase in effective statistics

![Distance to wall along particle trajectory](image)

Minimum distance to wall
SK event reconstruction

NEW since 2016 summer:
New reconstruction algorithm: fiTQun (likelihood-based)
Re-optimizing fiducial volume: ~30% increase in effective statistics

- Larger Towall = finer sampling of ring = better reconstruction
- Optimize cuts accounting for statistical and systematic errors
Data collection history
(Protons-On-Target)

- Total Accumulated POT for Physics
- ν-Mode Beam Power
- ν-Mode Beam Power

Accumulated POT

Beam Power (kW)

× 10^{20}
Data collection history
(Protons-On-Target)

Total Accumulated POT for Physics

ν-Mode Beam Power

ν-Mode Beam Power

$\times 10^{20}$

Accumulated POT

Beam Power (kW)

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8

start of ν-mode
Data collection history

(Potons-On-Target)

Total Accumulated POT for Physics

ν-Mode Beam Power

$\bar{\nu}$-Mode Beam Power

Published results

POT: $7.5 \times 10^{20} \nu, 7.5 \times 10^{20} \bar{\nu}$
Published results
POT: 7.5×10^{20} ν, 7.5×10^{20} \bar{ν}

Stable beam power at 470 kW, doubling ν POT in 1 year (NEW)
This talk: 14.7×10^{20} ν, 7.6×10^{20} \bar{ν}, totaling 29% of approved

Data collection history
(Protons-On-Target)

Total Accumulated POT for Physics
ν-Mode Beam Power
\bar{ν}-Mode Beam Power

Accumulated POT

Beam Power (kW)

start of ν-mode
Outline

• Neutrino oscillations and the T2K experiment
• Joint oscillation analysis with ν_μ, $\bar{\nu}_e$, ν_μ, and $\bar{\nu}_e$ samples
• Summary
Near Detector Samples

- **ν-mode FGD1 pμ**

- **μ− CC0π**
- **μ− CC1π**
- **μ− CCNπ**

- **ν-mode FGD1 pμ**

- **μ+ 1-track**
- **μ+ N-track**

- **μ− 1-track**
- **μ− N-track**

Data
- 6 ν-mode samples (FGD1,2)
- 8 ν-mode samples (FGD1,2)

Model
- Flux prediction: beamline MC tuned with ext. data (NA61) + beam monitor, INGRID
- Cross-section models tuned to ext. measurements.
Near Detector Fit – *post-fit*

- Data
 - 6 ν-mode samples (FGD1,2)
 - 8 ν̄-mode samples (FGD1,2)
- Simultaneous fit of p_μ, θ_μ
 - Data well reproduced: p-value 0.47
 - Fitted flux parameters near nominal, most within 1σ prior uncertainty
 - Nucleon correlations (NEW): 2p2h, RPA effects significantly adjusted
 - flux \times cross section at SK sys. error 13% → 3 %.
Event distributions and oscillation fit

CCQE-like sample

- 240 ν_μ
- 74 ν_e
- 15 ν_e

CC1π^+ sample

- 68 $\bar{\nu}_\mu$
- 7 $\bar{\nu}_e$

Reconstructed neutrino energy distributions at Super-Kamiokande

- Dotted: data; histogram: oscillation fit results, p-value 0.42

(No CC1π^- sample due to π^- absorption)
Event distributions and oscillation fit

CCQE-like sample

240 ν_μ

ν_μ rate lower than fit, consistent with uncertainties.

CC1π^+ sample

74 ν_e

15 ν_e

(No CC1π^- sample due to π^- absorption)
Event distributions and oscillation fit

CCQE-like sample

- 240 ν_μ
- 68 $\bar{\nu}_\mu$

CC1π^+ sample

- 74 ν_e
- 7 $\bar{\nu}_e$
- 15 ν_e

(No CC1π^- sample due to π^- absorption)

- ν_e CC1π^+ via Δ production
- ν_e W
- ν_e N
- ν_e Δ

- CC1π ν_e rate: 15 events observed vs. 6.92 maximum prediction
- P-value 0.12 for upward or downward fluctuation in at least 1 of 5 samples
Atmospheric parameter constraints

- Fit normal and inverted hierarchies separately
- Final systematics pending, possible additional contribution from interaction models (no significant impact on δ_{CP})
Appearance parameter constraints

- **Left**: T2K best-fit result and confidence intervals compared to PDG 2016: consistent
 - ν data bring in δ_{CP}-sensitivity
- **Right**: T2K results with reactor constraint (PDG 2016), contour range much reduced.
Measurement of δ_{CP}

- Excess in neutrino (top)
- Deficit in antineutrino (bottom)

CCQE-like ν_e and $\bar{\nu}_e$ rate compared to $\delta_{\text{CP}} = 0$ predictions:
Measurement of δ_{CP}

Percentage errors on predicted event rate ratio between ν_e and $\bar{\nu}_e$ samples: relevant for δ_{CP} extraction

<table>
<thead>
<tr>
<th>SK detector</th>
<th>SK FSI+SI+PN</th>
<th>ND280 constrained flux & xsec</th>
<th>$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$</th>
<th>NC1γ</th>
<th>NC other</th>
<th>Oscillation parameter variation</th>
<th>Total systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>1.57</td>
<td>2.50</td>
<td>3.03</td>
<td>1.49</td>
<td>0.18</td>
<td>0.79</td>
<td>4.85</td>
</tr>
</tbody>
</table>
Measurement of δ_{CP}

Percentage errors on predicted event rate ratio between ν_e and $\bar{\nu}_e$ samples: relevant for δ_{CP} extraction

<table>
<thead>
<tr>
<th>SK detector</th>
<th>SK FSI+SI+PN</th>
<th>ND280 constrained flux & xsec</th>
<th>$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$</th>
<th>NC1γ</th>
<th>NC other</th>
<th>Oscillation parameter variation</th>
<th>Total systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>1.57</td>
<td>2.50</td>
<td>3.03</td>
<td>1.49</td>
<td>0.18</td>
<td>0.79</td>
<td>4.85</td>
</tr>
</tbody>
</table>

ND280 constraint on flux & cross section, reducing error from 13% to 3%.
Measurement of δ_{CP}

Percentage errors on predicted event rate ratio between ν_e and $\bar{\nu}_e$ samples: relevant for δ_{CP} extraction

<table>
<thead>
<tr>
<th>SK detector</th>
<th>SK FSI+SI+PN</th>
<th>ND280 constrained flux & xsec</th>
<th>$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$</th>
<th>NC1γ</th>
<th>NC other</th>
<th>Oscillation parameter variation</th>
<th>Total systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>1.57</td>
<td>2.50</td>
<td>3.03</td>
<td>1.49</td>
<td>0.18</td>
<td>0.79</td>
<td>4.85</td>
</tr>
</tbody>
</table>

ND280 constraint on flux & cross section, reducing error from 13% to 3%.

Don’t precisely measure $\sigma(\nu_e)$ and $\sigma(\bar{\nu}_e)$ in ND280. Apply a theoretically motivated error based on Phys.Rev. D86 (2012) 053003.
Measurement of δ_{CP}

Percentage errors on predicted event rate ratio between ν_e and $\bar{\nu}_e$ samples: relevant for δ_{CP} extraction

<table>
<thead>
<tr>
<th>SK detector</th>
<th>SK FSI+SI+PN</th>
<th>ND280 constrained flux & xsec</th>
<th>$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$</th>
<th>NC1γ</th>
<th>NC other</th>
<th>Oscillation parameter variation</th>
<th>Total systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>1.57</td>
<td>2.50</td>
<td>3.03</td>
<td>1.49</td>
<td>0.18</td>
<td>0.79</td>
<td>4.85</td>
</tr>
</tbody>
</table>

ND280 constraint on flux & cross section, reducing error from 13% to 3%.

Don’t precisely measure $\sigma(\nu_e)$ and $\sigma(\bar{\nu}_e)$ in ND280. Apply a theoretically motivated error based on Phys.Rev. D86 (2012) 053003.

Neutral current (NC) interactions not constrained by ND280. Theoretical models constrained by external measurements.
Measurement of δ_{CP}

Percentage errors on predicted event rate ratio between ν_e and $\bar{\nu}_e$ samples: relevant for δ_{CP} extraction

<table>
<thead>
<tr>
<th>SK detector</th>
<th>SK FSI+SI+PN</th>
<th>ND280 constrained flux & xsec</th>
<th>$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$</th>
<th>NC1γ</th>
<th>NC other</th>
<th>Oscillation parameter variation</th>
<th>Total systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>1.57</td>
<td>2.50</td>
<td>3.03</td>
<td>1.49</td>
<td>0.18</td>
<td>0.79</td>
<td>4.85</td>
</tr>
</tbody>
</table>

ND280 constraint on flux & cross section, reducing error from 13% to 3%.

Don’t precisely measure $\sigma(\nu_e)$ and $\sigma(\bar{\nu}_e)$ in ND280. Apply a theoretically motivated error based on Phys.Rev. D86 (2012) 053003.

Neutral current (NC) interactions not constrained by ND280. Theoretical models constrained by external measurements.

Total error 4.85% on event rate ratio $\nu_e / \bar{\nu}_e$ (10% by design).
Measurement of δ_{CP}

Best fit point: -1.83 radians in Normal Hierarchy

2σ CL interval:
- Normal Hierarchy: [-2.98, -0.60] radians
- Inverted Hierarchy: [-1.54, -1.19] radians

CP conserving values 0, π both fall outside 2σ CL intervals
T2K-II Protons-On-Target Request

- Extension of T2K run to 2×10^{21} POT (~2026)
- Currently approved for 7.8×10^{21} POT (~2021)
- Accelerator and beam-line upgrades to 1.3 MW

3-σ sensitivity for CP violation for favorable parameters, if
- Full T2K-II exposure 2×10^{21} POT
- 50% improvement in effective statistics: horn current, SK event reconstruction
- Systematic uncertainties down to 2/3 of current size: ND upgrade
Outline

- Neutrino oscillations and the T2K experiment
- Joint oscillation analysis with ν_μ, ν_e, $\bar{\nu}_\mu$, and $\bar{\nu}_e$ samples
- Summary
Summary

• **NEW** since 2016 summer:
 – Doubled neutrino-mode statistics
 – New reconstruction and event selection at SK: effective improvement in statistics by ~30%
 – Improvements to neutrino interaction model

• Updated oscillation parameter estimates
 – CP conserving values of δ_{CP} are disfavored at 2σ level.

• T2K upgrade to collect 20×10^{21} POT and achieve 3σ (in case of favorable true values of δ_{CP}) sensitivity to exclude CP conserving values.
谢谢！
BACKUP
Neutrino Oscillations

Neutrino (flavor) oscillations depend on mixing angles, δ_{CP}-phase and mass differences.

$$c_{ij} = \cos \theta_{ij}$$

$$s_{ij} = \sin \theta_{ij}$$

\[
\begin{pmatrix}
 \nu_e \\
 \nu_\mu \\
 \nu_\tau
\end{pmatrix}
=
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & c_{23} & s_{23} \\
 0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
 c_{13} & 0 & s_{13} e^{-i \delta_{CP}} \\
 0 & 1 & 0 \\
 -s_{13} e^{i \delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
 c_{12} & s_{12} & 0 \\
 -s_{12} & c_{12} & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix}
\]

$\theta_{ij} \neq 0$, δ_{CP}-phase irreducible \rightarrow leptonic CP violation

With a $\bar{\nu}_\mu$ beam flip sign

$$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \simeq \sin^2 2\theta_{13} \sin^2 \Delta_{32} \left(\sin^2 \theta_{23} + \frac{\sin^2 2\theta_{13} \sin^2 \theta_{23}}{2 \sin \theta_{13}} \sin \delta_{CP} \sin \Delta_{21} \right)$$

$$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) = P(\nu_\mu \rightarrow \nu_\mu) \text{ by CPT symmetry}$$

CP-odd term in appearance channels allow extraction of δ_{CP} using neutrino and anti-neutrino beams, up to $\pm 30\%$ effect at T2K – unique opportunities for experiments with accelerator neutrinos

* neglecting matter effects
Off-axis neutrino beams:
Reduce dependence on pion energy → narrow-band

Spectrum peak at maximum disappearance @SK
T2K off-axis near detector (ND280)

P0D: Pi0 Detector
- contains H₂O targets

Tracker:
- **FGD: Fine-Grained Detector**
 1. plastic scintillator C₈H₈ target
 2. C₈H₈ + H₂O target
- **Time Projection Chamber (TPC)**

Electromagnetic Calorimeter (ECAL):
- surrounding P0D and tracker

Side Muon Range Detector:
- in magnet yokes
 - constrain beam flux and cross section for oscillation analysis
 - stand-alone neutrino interaction measurements
Impact of data-driven variation on sensitivity:

\[\text{variation} = \text{pre-fit/model prediction difference at ND280} \]

Effect seen on \(\sin^2\theta_{23} \) and \(\Delta m^2_{32} \)

Will be addressed in future by 4\(\pi \) sample, hadronic recoil, ND upgrade

Shift \(\Delta \chi^2 \) observed in data (bottom plot) by difference observed in systematic study (top plot)

Maximum change to the NH 2\(\sigma \) confidence interval was 2.3%
END