Heavy ion physics at LHCb

Jiayin Sun (Tsinghua University)
On behalf of the LHCb collaboration

The 21st Particles & Nuclei International Conference
1-5 September 2017, IHEP, Beijing, China
Outline

• LHCb detector

• pPb collisions: recent results
 • Open heavy flavor results
 • Hidden heavy flavor results

• PbPb collisions: work in progress

• Fixed target: first results
 • Heavy flavor in pAr
 • Antiproton in pHe
LHCb detector

- A single arm forward spectrometer designed for the study of particles containing c or b quark.
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution $\sim 20 \mu m$
- Tracking system
 - $\frac{\Delta p}{p} = 0.5\% - 1\%$ (5-200 GeV/c)
- RICH
 - $K/\pi/p$ separation
- Electromagnetic + hadronic Calorimeters
- Muon systems
pPb datasets and recent results

- **Rapidity Coverage**
 - y^*: rapidity in nucleon-nucleon cms
 - $y_{cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

- $\sqrt{s_{NN}} = 5$ TeV (2013)
 - pPb (1.06 nb$^{-1}$) + Pbp (0.52 nb$^{-1}$)
 - Open heavy flavor D^0 and Λ_c^+
 - Collectivity

- $\sqrt{s_{NN}} = 8$ TeV (2016)
 - pPb (13.6 nb$^{-1}$) + Pbp (21.8 nb$^{-1}$)
 - Hidden heavy flavor J/ψ
Prompt D^0 measurement in pPb at 5TeV

- Reconstructed through decay channel: $D^0 \rightarrow K^-\pi^+$
- Inclusive D^0 mesons from fitting invariant mass dist.:
 - Signal: Crystal Ball
 - Background: linear
- Prompt D^0 fraction extracted from fitting impact parameter dist.:
 - Prompt: simulation
 - D^0-from-b: simulation
 - Background: sideband in data

arXiv:1707.02750
Prompt Λ_c^+ measurement in pPb at 5TeV

- Reconstructed through decay channel $\Lambda_c^+ \rightarrow pK^-\pi^+$

- Inclusive Λ_c^+ baryons from fitting invariant mass dist.:
 - Signal: Gaussian
 - Background: linear

Prompt Λ_c^+ fraction extracted from fitting impact parameter dist.:
 - Prompt: simulation
 - Λ_c^+-from-b: simulation
 - Background: sideband in data
Prompt D^0 at 5TeV
nuclear modification factor in pPb

$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})}{\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})}$, $A=208$

Updated since preliminary result:
Directly measured with prompt D^0 in pp at $\sqrt{s} = 5$ TeV
arXiv:1610.02230

• Nuclear modification factor smaller at large rapidity
• Measurements consistent with theoretical calculations

arXiv:1707.02750
Prompt D^0 at 5TeV forward-backward production ratio

- $R_{FB} = \frac{d\sigma(+|y^*|,p_T)/dx}{d\sigma(-|y^*|,p_T)/dx}$

- R_{FB} does not need results from pp collisions.

- Compared to next-to-leading order NLO calculations with different nPDFs

- Consistent with theoretical calculations within uncertainty

arXiv:1707.02750

Eur. Phys. J. C77 (2017) 1,

Prompt Λ^+_c at 5TeV forward-backward production ratio

- $R_{FB} = \frac{d\sigma(+|y^*,p_T)/dx}{d\sigma(-|y^*,p_T)/dx}$

- R_{FB} does not need results from pp collisions.

- Compared to next-to-leading order NLO calculations with different nPDFs

- Consistent with theoretical calculations within uncertainty

Charmed baryon/meson production ratio $R_{\Lambda_c^+ / D^0}$ at 5TeV

- $R_{\Lambda_c^+ / D^0} = \frac{\sigma_{\Lambda_c^+}(y^*,p_T)}{\sigma_{D^0}(y^*,p_T)}$

- EPS09LO & EPS09NLO gives similar predictions.
- nCTEQ15 slightly lower.

- Forward:
 - Consistent at lower p_T
 - Below theory at higher p_T
- Backward:
 - Consistent for all p_T

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5TeV

- $R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*,p_T)}{\sigma_{D^0}(y^*,p_T)}$

- EPS09LO & EPS09NLO gives similar predictions.
- nCTEQ15 slightly lower.

- Forward:
 - Consistent for all $|y^*|$

- Backward:
 - Consistent at lower $|y^*|$
 - Displays a rising trend with increasing $|y^*|$

Eur. Phys. J. C77 (2017) 1,
Prompt and nonprompt J/ψ in pPb at 8TeV

- Reconstructed through $J/\psi \rightarrow \mu^+\mu^-$
- Signal extraction with 2D simultaneous fit to mass and the pseudo proper decay time $t_z \equiv \frac{(Z_{J/\psi} - Z_{PV}) \times M_{J/\psi}}{p_z}$
- Prompt and nonprompt (from-b-hadrons) separated
- Fraction from b hadrons:
 - Increasing trend
 - Low p_T: cold nuclear matter effects different for the prompt and nonprompt

9/2/2017 PANIC2017
Prompt J/ψ at 8TeV
nuclear modification factor in pPb

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})}{\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})}$$, $A=208$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13TeV
- Forward rapidity: suppression up to 50% at low p_T, decreasing with increasing p_T
- Backward rapidity: closer to unity
- Overall agreement with models with large uncertainties on the gluon PDFs at low x
- Compatible with 5TeV results

[Graphs showing R_{pPb} for pPb and pPb at different rapidity regions]

arXiv:1706.07122
J/ψ-from-b-hadrons at 8TeV
nuclear modification factor in pPb

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\sigma_{pPb}(y^*, p_T, \sqrt{S_{NN}})}{\sigma_{pp}(y^*, p_T, \sqrt{S_{NN}})}, \quad A=208$$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13TeV
- Forward rapidity: smaller suppression up to 30% at low p_T, reach unity at higher p_T
- Backward: compatible with unity
- FONLL with EPS09NLO consistent with data
- Compatible with 5TeV results

JHEP 04 (2009) 065
arXiv:1706.07122
Prompt J/ψ at 8TeV
forward-backward production ratio

- $R_{FB} = \frac{d\sigma(+|y^*|, p_T)/dx}{d\sigma(-|y^*|, p_T)/dx}$
- R_{FB} does not need results from pp collisions.
- Prompt J/ψ:
 - Clear forward-backward asymmetry
 - Increasing trend with increasing p_T
- Nonprompt J/ψ:
 - Closer to unity
- Models for prompt J/ψ only
- Consistent with 5TeV results

arXiv:1706.07122
PbPb collisions

- December 2015: first LHCb PbPb data taken
- $\sqrt{s_{NN}} = 5$ TeV (3-5 μb$^{-1}$)
- Event classification: total energy in the calorimeters (Ecal)
- Analyses limited by saturation in Vertex Locator (VELO)
- Track reconstruction: 50-100% event activity (~15k clusters)
Fixed target physics

- **LHCb**: only experiment at the LHC can operate in fixed-target mode
- **SMOG**: The System for Measuring Overlap with Gas
 - Unique feature
 - Noble gas (He, Ne, Ar...) injection inside the LHC beam close to the interaction point
 - Luminosity measurement
 - Internal gas target
- Allows p-gas and ion-gas collisions
- $\sqrt{s_{NN}}$ region between 20 GeV (SPS) and 200 GeV (RHIC)
- Access nPDF anti-shadowing region and intrinsic charm content in the nucleon
Charm production in pAr collisions

• Dataset:
 • $\sqrt{s_{NN}} = 110$ GeV (2015)
 • 6.5 TeV proton beam on Ar gas target
 • Protons on target: 4×10^{22}
 • $\sim 500 \ J/\psi$ and $\sim 6500 \ D^0$

• Shapes consistent with PYTHIA and interpolation between HERA-B and PHENIX
Charm production in $p\text{Ar}$ collisions

- $J/\psi / D^0$ cross section ratio
 - Luminosity cancels
 - Increase with p_T
 - Little dependence on rapidity
- Demonstrate the feasibility of a heavy–flavor–fixed–target program at LHCb
- Theoretical calculations are welcome
Measurement of \bar{p} production in pHe collisions

• AMS-2: possible anti-proton excess at high energies
• \bar{p}/p ratio predictions limited by uncertainties on \bar{p} production cross-sections, particularly for p-He
• Prompt production at $\sqrt{s_{NN}} = 110$ GeV in pHe collisions
• EPOS LHC prediction:
 • Data/MC $\sim 1.19 \pm 0.08$
Conclusion

• Heavy ion collisions
 • \(p\text{Pb} \) collisions at \(\sqrt{s_{NN}} = 5 \) and 8 TeV in 2013/2016
 • Open heavy flavor analyses: prompt \(D^0 \) and \(\Lambda_c^+ \)
 • Hidden heavy flavor: prompt and nonprompt \(J/\psi \)
 • Angular correlation measured (not included)
 • \(\text{PbPb} \) collisions at \(\sqrt{s_{NN}} = 5 \) TeV in 2015
 • Ongoing analyses on semi-central to peripheral collisions

• Fixed target collisions
 • SMOG: unique feature enabling a fixed target program in LHCb
 • First results on
 • \(D^0 \) and \(J/\psi \) production in \(p\text{Ar} \) collisions \(\sqrt{s_{NN}} = 110 \) GeV
 • \(\bar{p} \) production in \(p\text{He} \) collisions \(\sqrt{s_{NN}} = 110 \) GeV
backup
SMOG: Gas target in LHCb

- **SMOG:** System for Measuring Overlap with Gas
 - Inject noble gas (He, Ne, Ar...) into the LHC beam (~±20 m) around the LHCb collision region
 - Gas pressure ~ 2×10^{-7} mbar
 - Primarily for measuring luminosity at LHC
 - Fixed target: use non-colliding bunches

- **Fixed target collisions:**
 - Covers mid to backward rapidity region:
 - $y^* = y - 4.77$

<table>
<thead>
<tr>
<th>$E_{\text{beam}(p)}$</th>
<th>p-SMOG</th>
<th>Pb-SMOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 TeV</td>
<td>69 GeV</td>
<td></td>
</tr>
<tr>
<td>6.5 TeV</td>
<td>110 GeV</td>
<td>69 GeV</td>
</tr>
<tr>
<td>7.0 TeV</td>
<td>115 GeV</td>
<td>72 GeV</td>
</tr>
</tbody>
</table>
Charm signals in PbPb dataset

\[J/\psi \to \mu^+ \mu^- \]

\[D^0 \to K^- \pi^+ \]
Strange signals in PbPb dataset

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015
Ultraperipheral J/ψ photo-production

- Selecting events containing only two muon tracks
Long-range near-side angular correlations

In high-activity events, a long-range correlation on the near side is observed in the pseudorapidity range $2.0 < \eta < 4.9$.