Light-Meson Spectroscopy at GlueX

Alexander Austregesilo
for the GlueX Collaboration

21st Particles and Nuclei International Conference (PANIC 2017)
Beijing, China
September 2nd, 2017
Outline

1. Motivation
2. First Results
 - Beam Asymmetries
 - Prospects for Spectroscopy
 - Charmonium
3. Summary
Outline

1. Motivation

2. First Results
 - Beam Asymmetries
 - Prospects for Spectroscopy
 - Charmonium

3. Summary
Context: Strong Interaction

Quantum ChromoDynamics (QCD)

- Degrees of freedom: quarks and gluons
- Confinement: only color-neutral objects can be observed
- Baryons (qqq, $\bar{q}\bar{q}\bar{q}$) and Mesons ($q\bar{q}$) as the relevant degrees of freedom
Context: Strong Interaction

Quantum ChromoDynamics (QCD)

- Degrees of freedom: quarks and gluons
- Confinement: only color-neutral objects can be observed
- Baryons \((qqq, \bar{q}\bar{q}\bar{q})\) and Mesons \((q\bar{q})\) as the relevant degrees of freedom
- Glueballs, Hybrids and other exotic hadrons predicted by many approximations

Gell-Mann’s Totalitarian Principle: Everything not forbidden is compulsory!
Motivation

Meson Spectroscopy

Constituent Quark Model (CQM)
- Bound state of $q\bar{q}$
- Quantum numbers: $I^G(J^{PC})$

Light-Meson Spectroscopy
- Exotic quantum numbers $(0^{--}, 0^{+-}, 1^{--}, ...)$ forbidden by NR QM
- Many missing and disputed states
- Broad and overlapping resonances

⇒ Study spectrum and properties (width, decay, ...) of mesons

$q\bar{q}$
$(q\bar{q}), (q\bar{q})_0$
$(q\bar{q})(q\bar{q})$
$(q\bar{q})_8g$
Hybrid
gg
Glueball

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
Tremendous progress in recent years

- Excited states, spin-identified spectra, chromomagnetic content
- Resonance parameters and decay modes starting to become accessible
- Experimental results need to reach equivalent precision
Spectroscopy Worldwide

hadron probes

colliding beam

CDF

ATLAS

CMS

LHCb

ongoing/future

BES III

BaBar

Belle II

completed/analysis

fixed target

COMPASS

Panda

ongoing/future

GlueX

CLAS12

completed/analysis
Photoproduction

\[\gamma \rightarrow (\rho, \omega, \phi) \rightarrow X \]

\[P, \pi, \rho, \ldots \]

\[p \rightarrow p, n, \Delta, \ldots \]

Complementary Production Mechanism

- Photon coupling via vector meson dominance
- Wide variety of \(I^G J^{PC} \) states accessible
- Photon polarization provides additional constraints

Exchange	Exotic Final States
\(\rho \rightarrow 0^{++} \) | \(b, h, h' \rightarrow 2^{+-}, 0^{+-} \)
\(\pi^0 \rightarrow 0^{-+} \) | \(b_2, h_2, h'_2 \rightarrow 2^{+-} \)
\(\pi^\pm \rightarrow 0^{-+} \) | \(\pi_1 \rightarrow 1^{--} \)
\(\omega \rightarrow 1^{--} \) | \(\pi_1, \eta_1, \eta'_1 \rightarrow 1^{--} \)
Photon Beam Line

Motivation

Results

Summary

12 GeV e⁻

North LINAC

East ARC

Photon Tagger

Pair Spectrometer & Triplet Polarimeter

9 GeV Polarized Photon Beam

- Coherent Bremsstrahlung on thin diamond
- Energy tagged by scattered electrons
- Collimator to suppress incoherent part
- Linear polarization in peak $P_\gamma \approx 40\%$, measured by Triplet polarimeter: $\gamma e^- \rightarrow e^- e^+ e^-$
- Beam intensity: $1 - 5 \cdot 10^7 \gamma$/s in peak
Map light quark meson spectrum up to 3 GeV/c² with full acceptance for all decay modes.
GlueX Runs

Fall 2014 - Spring 2015
Detector and beamline commissioning

Spring 2016: GlueX Engineering Run
- Initial physics data (≈ 80 h)
- First results presented here

Graph:
- Number of Events Collected / 10^9 vs. Integrated Beam Time [Days]
- Lines for \perp Polarization, \parallel Polarization, Unpolarized, Total

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
GlueX Runs

Fall 2014 - Spring 2015
Detector and beamline commissioning

Spring 2016: GlueX Engineering Run
- Initial physics data (≈ 80 h)
- First results presented here

GlueX-I: 2017 - 2018
- 6 weeks in spring 2017
- 20% of full data set collected (≈ 1PB)
- Will continue early 2018

GlueX-II: 2019+
- Upgraded detector
- High luminosity
Motivation

Results

Summary

Analysis Strategy

GlueX + Joint Physics Analysis Center (JPAC)

- High statistical precision requires removing simplifying assumptions
- Robust theoretical models and capable analysis frameworks
- Collaboration: experiment and theory working together on analysis and interpretation

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
Motivation

Understanding production mechanism necessary for amplitude analysis

Beam asymmetry Σ and its t dependence sensitive to exchanged J^{PC}

Beam polarization P_γ measured with polarimeter

Cancel systematic effects by rotating polarization plane by 90°
π0 and η Beam Asymmetries

First GlueX Publication!

- No observed dip at \(-t = 0.5 \text{ (GeV}/c)^2\)
- Comparison with several theory models
- Constrains background to baryon resonance production
- First measurement for η at this energy
- Measurement for η' with 2017 data

Recently revived interest in charge exchange

$-t$ dependence sensitive to Regge contributions

Important confirmation for theoretical models

Motivation

Results

Summary

π^+/π^- Beam Asymmetry

SLAC data

from [PRD 20 (1979) 1553]
Motivation

Recently revived interest in charge exchange t-dependence sensitive to Regge contributions.

Results

Important confirmation for theoretical models

- $\chi^2 / \text{ndf} = 983.5 / 416$
- $C_{BW} = 608.9 \pm 4.7$
- $M_0 = 1.22 \pm 0.00$
- $\Gamma_0 = 0.1106 \pm 0.0015$
- $C_{PS} = 110.9 \pm 5.8$

\begin{align*}
\frac{S}{S+B} &= 0.921 \\
\end{align*}

Summary

- Preliminary

Beam Asymmetry

π^+ / π^- Beam Asymmetry

$\Delta^{++}(1232)$

$\gamma \rightarrow \Delta^{++}(1232)$

- $M_0 = 1.59 \pm 0.00$
- $\Gamma_0 = 0.15 \pm 0.00$
- $C_{PS} = 55.1 \pm 0.4$

\begin{align*}
\frac{S}{S+B} &= 0.921 \\
\end{align*}

Artifacts of tracking detector geometry

Motivation Results Summary

\(\rho\) Beam Asymmetry

\(\gamma p \rightarrow \pi^+\pi^- p\)

\(\gamma p \rightarrow \pi^+\pi^- p\)

\(\gamma p \rightarrow \pi^+\pi^- p\)

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
Motivation

Results

Summary

ρ Beam Asymmetry

Artifacts of tracking detector geometry

- Acceptance effects cancel
- Confirmation of polarization
- Analysis of angular distribution
 ⇒ Spin Density Matrix Elements

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
Motivation

Results

Summary

\(\pi\pi \) Spectroscopy

\[\text{Invariant Mass (GeV/c)} \]

\[\text{# Combos / 2.5 MeV/c} \]

\[\approx 100 \times \] more data than previous experiments

Hints for excited \(\rho \) \(\Rightarrow \) moment / amplitude analysis started

\[\text{SLAC [PRL 53 (1984) 751]} \]
Multi-Photon Final States
\(\gamma + p \rightarrow 4\gamma + p \)

Motivation

Results

Summary

\(m(2\gamma,\text{pair}2) \) vs \(m(2\gamma,\text{pair}1) \)

\(\pi^0\eta \)

\(\pi^0 \pi^0 \)

\(\pi^0 \eta \)

\(\eta \pi^0 \) invariant mass

\(f_2(1270) \)

\(f_0(980) \)

\(a_0(980) \) \(a_2(1320) \)

Combinations / 0.0025 GeV

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
Motivation Results Summary

Multi-Photon Final States
\(\gamma + p \rightarrow 5 \gamma + p \)

\[
\begin{align*}
\Delta M(\pi^0\gamma) &= 0.76 - 0.81 \text{ GeV} \\
\omega(782) &+ b_1(1235)
\end{align*}
\]
Motivation

Results

Summary

Multi-Photon Final States

\[\gamma + p \rightarrow 6\gamma + p \]

- **GlueX** well equipped for the detection of **neutral particles**
- Excellent prospects for spectroscopy program

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
Mapping the Meson Spectrum

Motivation

Results

Summary

Mapping the Meson Spectrum

- **negative parity**
 - ρ'
 - $b_1(1235)$

- **positive parity**
 - $\alpha_2(1320)$
 - $f_2(1270)$

- **exotics**

Meson Mass (MeV)

J^{PC}

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX

J.J. Dudek et al. [Phys. Rev. D 88 (2013)]
Charmonium Photoproduction

\[\gamma + p \rightarrow p + J/\psi, \quad J/\psi \rightarrow e^+ e^- \]

- Production at threshold is ideal for studying N + J/ψ interaction
- Very few existing measurements
Charmonium Photoproduction

\[\gamma + p \rightarrow p + J/\psi, \quad J/\psi \rightarrow e^+ e^- \]

- Production at threshold is ideal for studying N + J/\psi interaction
- Very few existing measurements
- First observation of charmonium at 12 GeV CEBAF
Summary

Status

- Successful **commissioning** and **early physics** analyses
- 20% of data for GlueX-I **taken**
- Understanding of detector **acceptance** and **systematics**
 ⇒ Comparison with previous measurements and models
- Study **production mechanism**
 ⇒ Cross sections, beam asymmetries and spin density matrix elements

GlueX-I: **Light-Meson Spectroscopy**

- **Mapping** of the entire light meson spectrum
- **Precise measurement** of known resonances and ultimately hybrid candidates

Plans with GlueX-II: **Strange-Meson Spectroscopy**

- Focus on meson spectrum with **strangeness** content
Motivation

Results

Summary

GlueX-II Detector Upgrade

GlueX DIRC: construction started with BaBar DIRC components for π/K separation up to 4 GeV/c

⇒ Strange-meson spectroscopy

High luminosity: high-level trigger

⇒ Rare processes

A. Austregesilo (aaustreg@jlab.org) — Light-Meson Spectroscopy at GlueX
GlueX-II Detector Upgrade

- **GlueX DIRC**: construction started with BaBar DIRC components for π/K separation up to 4 GeV/c
 \Rightarrow Strange-meson spectroscopy

- **High luminosity**: high-level trigger
 \Rightarrow Rare processes

Thank you for your attention!