Direct analysis of PDF data: Atomic pair correlations, coordination numbers, bond angles...

Practical aspects, Reality

Alex Hannon
ISIS Facility, UK

ISIS-CSNS Total Scattering Workshop 7-9 November, Dongguan, China

alex.hannon@stfc.ac.uk http://alexhannon.co.uk

The Fourier Transform

• Fourier transform from reciprocal-space (Q) to real-space (r)

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

Fourier transform

"Structure factor"

 $(B_2O_3 glass)$

PDF "pair distribution function"

Calculation of the Fourier transform

- The Fourier transform can be calculated by software, using numerical integration (Filon's quadrature), or a fast Fourier transform
- A simple standalone Fourier transform program I2T is available here http://alexhannon.co.uk

(Percus-Yevick hard sphere liquid)

Diffraction pattern i(Q)Reciprocal-space

Correlation function T(r)Real-space

Q-range

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- In theory the Fourier transform requires data with Q-values from zero to ∞ → impossible!
- Experimental data cover a limited range from Q_{\min} to Q_{\max}
- Typical values for the GEM diffractometer:

$$Q_{\min} = 0.58 \, \text{Å}^{-1}$$
 $Q_{\max} = 40 \, \text{Å}^{-1}$

Ų-range

Limits:
$$0, \infty$$

Limits:
$$0, \infty$$

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- In theory the Fourier transform requires data with Q-values from zero to $\infty \rightarrow$ impossible!
- Experimental data cover a limited range from Q_{\min} to Q_{\max}
- Typical values for the GEM diffractometer:

$$Q_{\min} = 0.58 \text{ Å}^{-1}$$

$$Q_{\rm max}$$
 = 40 Å⁻¹

Q-range

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- In theory the Fourier transform requires data with Q-values from zero to ∞ → impossible!
- Experimental data cover a limited range from Q_{\min} to Q_{\max}
- Typical values for the GEM diffractometer:

$$Q_{\min} = 0.58 \text{ Å}^{-1}$$

$$Q_{\rm max}$$
 = 40 Å⁻¹

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Missing data in the Q-range 0 to Q_{\min} can be estimated by extrapolation
- Use a constant, or better to fit $A + BQ^2$ $(i^N(Q))$ is a symmetric function)
- A small effect, because integrand is $Qi^{N}(Q)$ (multiply by Q)

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Missing data in the Q-range 0 to Q_{\min} can be estimated by extrapolation
- Use a constant, or better to fit $A + BQ^2$ $(i^N(Q))$ is a symmetric function)
- A small effect, because integrand is $Qi^{N}(Q)$ (multiply by Q)

Warning:

there may be a pre-peak, there may be small angle scattering

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Missing data in the Q-range 0 to Q_{\min} can be estimated by extrapolation
- Use a constant, or better to fit $A + BQ^2$ $(i^N(Q))$ is a symmetric function)
- A small effect, because integrand is $Qi^{N}(Q)$ (multiply by Q)

Warning:

there may be a pre-peak, there may be small angle scattering

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Missing data in the Q-range 0 to Q_{\min} can be estimated by extrapolation
- Use a constant, or better to fit $A + BQ^2$ $(i^N(Q))$ is a symmetric function)
- A small effect, because integrand is $Qi^{N}(Q)$ (multiply by Q)

Termination at
$$Q_{\text{max}}$$
 $T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Q i^{N}(Q) \sin rQ dQ$

• Termination of $i^{N}(Q)$ at Q_{\max} has important effect: Direct Fourier transform of terminated $i^{N}(Q)$ has large termination ripples

Termination at
$$Q_{\text{max}}$$
 $T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Q i^{N}(Q) \sin rQ dQ$

• Termination of $i^{N}(Q)$ at Q_{\max} has important effect: Direct Fourier transform of terminated $i^{N}(Q)$ has large termination ripples

 $r_{\rm GeO}$ = 1.7369(2) Å in GeO₂ glass

(Hannon et al, J Phys Chem B 2007)

Termination at
$$Q_{\text{max}}$$
 $T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Q i^{N}(Q) \sin rQ dQ$

• Termination of $i^{N}(Q)$ at Q_{\max} has important effect Direct Fourier transform of terminated $i^{N}(Q)$ has large termination ripples

 $r_{\rm GeO}$ = 1.7369(2) Å in GeO₂ glass

(Hannon et al, J Phys Chem B 2007)

Termination at
$$Q_{\text{max}}$$
 $T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Q i^{N}(Q) \sin rQ dQ$

• Termination of $i^{N}(Q)$ at Q_{\max} has important effect Direct Fourier transform of terminated $i^{N}(Q)$ has large termination ripples

 $r_{\rm GeO}$ = 1.7369(2) Å in GeO₂ glass

(Hannon et al, J Phys Chem B 2007)

(GeO, glass)

One distance

$$i_{lm}(Q) = n_{lm}\bar{b}_{l}\bar{b}_{m}\frac{\sin Qr_{lm}}{Qr_{lm}}\exp\left(-\frac{\langle u_{lm}^{2}\rangle Q^{2}}{2}\right)$$

- One interatomic distance r_{lm} gives damped sine wave contribution to $Qi^{
 m N}(Q)$
- Damping comes from the Debye-Waller factor
- $\langle u_{lm}^2 \rangle$ is variance in distance r_{lm}

One distance

$$i_{lm}(Q) = n_{lm}\bar{b}_{l}\bar{b}_{m}\frac{\sin Qr_{lm}}{Qr_{lm}}\exp\left(-\frac{\langle u_{lm}^{2}\rangle Q^{2}}{2}\right)$$

- One interatomic distance r_{lm} gives damped sine wave contribution to $Qi^{
 m N}(Q)$
- Damping comes from the Debye-Waller factor
- $\langle u_{lm}^2 \rangle$ is variance in distance r_{lm}

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Without truncation: $T^{
 m N}(r)$ peak is narrow Gaussian
- With truncation: $T^{N}(r)$ peak is broadened and there are <u>termination ripples</u>

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Without truncation: $T^{
 m N}(r)$ peak is narrow Gaussian
- With truncation: $T^{N}(r)$ peak is broadened and there are <u>termination ripples</u>

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Termination of $i^{N}(Q)$ at Q_{\max} is ... the same as multiplication by a step function $M_{\text{step}}(Q)$
- The sharp cutoff at $Q_{\rm max}$ causes termination ripples ...and broadens $T^{\rm N}(r)$ with width $\Delta r_{\rm step} = 3.791/Q_{\rm max}$ (FWHM)
- Real-space resolution function is $\sin(Q_{\max}r)/(Q_{\max}r)$

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} Qi^{N}(Q) \sin rQ \, dQ$$

- Termination of $i^{N}(Q)$ at Q_{\max} is ... the same as multiplication by a step function $M_{\text{step}}(Q)$
- The sharp cutoff at $Q_{\rm max}$ causes termination ripples ...and broadens $T^{\rm N}(r)$ with width $\Delta r_{\rm step} = 3.791/Q_{\rm max}$ (FWHM)
- Real-space resolution function is $\sin(Q_{\rm max}r)/(Q_{\rm max}r)$

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} M(Q)Qi^{N}(Q) \sin rQ \, dQ$$

- The step function has a sharp cutoff
- Instead multiply $i^N(Q)$ by modification function with a smooth cutoff then termination ripples are a lot smaller
- Most popular M(Q) is the Lorch function

$$M_{
m Lorch}(Q) = rac{\sin(\Delta r Q)}{\Delta r Q} \quad Q \leq Q_{
m max}$$
 $M_{
m Lorch}(Q) = 0 \qquad Q > Q_{
m max}$ $\Delta r = \pi/Q_{
m max}$

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} M(Q)Qi^{N}(Q) \sin rQ \, dQ$$

- The step function has a sharp cutoff
- Instead multiply $i^N(Q)$ by modification function with a smooth cutoff then termination ripples are a lot smaller
- Most popular M(Q) is the Lorch function

$$M_{
m Lorch}(Q) = rac{\sin(\Delta r Q)}{\Delta r Q} \quad Q \leq Q_{
m max}$$
 $M_{
m Lorch}(Q) = 0 \qquad Q > Q_{
m max}$ $\Delta r = \pi/Q_{
m max}$

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} M(Q)Qi^{N}(Q) \sin rQ \, dQ$$

 With the Lorch function: termination ripples are a lot smaller

 Real-space resolution function is complicated

• $T^{\rm N}(r)$ is broadened more with width $\Delta r_{\rm Lorch} = 5.437/Q_{\rm max}$ (FWHM)

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} M(Q)Qi^{N}(Q) \sin rQ \, dQ$$

 With the Lorch function: termination ripples are a lot smaller

 Real-space resolution function is complicated

• $T^{\rm N}(r)$ is broadened more with width $\Delta r_{\rm Lorch} = 5.437/Q_{\rm max}$ (FWHM)

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} M(Q)Qi^{N}(Q) \sin rQ \, dQ$$

Function	Step	Lorch
Termination ripples	large	small
Peak shape	simple $\sin x/x$	complicated
Real-space resolution	narrower $\Delta r = 3.791/Q_{\rm max}$	broader $\Delta r = 5.437/Q_{\rm max}$

- Step function is better if resolution is most important
- Lorch function is better if clear determination of distance distribution is most important

Phosphate Glasses

- Phosphate glasses:
 2 different P-O bond lengths, P-NBO and P-BO
- Only high $Q_{\rm max}$ (55 Å⁻¹) and <u>step</u> modification function can resolve the bond lengths

BO = Bridging Oxygen NBO = Non-Bridging Oxygen

 $r_{\rm P-NBO}$ = 1.4800(6) Å

 $r_{\rm P-BO}$ = 1.5977(10) Å

 $(2CaO \cdot Na_2O \cdot 3P_2O_5 glass)$

(Hannon, Nucl Inst Meth A 2005)

- Only pulsed neutron diffraction can resolve the 2 different P-O bond lengths, P-NBO and P-BO
- Important for understanding structural behaviour

BO = Bridging Oxygen

NBO = Non-Bridging Oxygen

(Hoppe, J Non-Cryst Solids 2000)

Real-space resolution

 $\Delta r_{\text{step}} = 3.791/Q_{\text{max}}$

- Narrow real-space resolution requires high $Q_{
 m max}$
- High Q_{\max} requires high energy $(Q = 2k \sin \theta)$
- Only pulsed accelerator neutron sources (ISIS, China-SNS) have high energy 1 – 10 eV
- Achievable Q_{max} is limited by...
 - Debye-Waller factor

Real-space resolution

 $\Delta r_{\rm step} = 3.791/Q_{\rm max}$

- Narrow real-space resolution requires high $Q_{\rm max}$
- High Q_{max} requires high energy $(Q = 2k \sin \theta)$
- Only pulsed accelerator neutron sources (ISIS, China-SNS) have high energy 1 – 10 eV
- Achievable Q_{max} is limited by...
 - Debye-Waller factor
 - Neutron flux

Real-space resolution

- Narrow real-space resolution requires high $\overline{Q}_{ ext{max}}$
- High Q_{\max} requires high energy $(Q = 2k \sin \theta)$
- Only pulsed accelerator neutron sources (ISIS, China-SNS) have high energy 1 – 10 eV
- Achievable Q_{max} is limited by...
 - Debye-Waller factor
 - Neutron flux
 - − *Q*-resolution

Germanate Glasses

Increasing

(Cs₂O-GeO₂ glasses)

- Germanate glasses have a distribution of Ge-O bond lengths
- Use the Lorch function to observe the distribution clearly
- As Cs₂O is added, longer Ge-O bonds form, but then decline for high Cs₂O content

Ge-O peak moves to longer distance and a high-r shoulder develops

(Hannon et al, J Phys Chem B 2007)

Germanate Glasses

(Cs₂O-GeO₂ glasses)

- Ge-O coordination number is obtained from the 1st Ge-O peak
- Pure GeO₂ is formed from GeO₄ tetrahedra
- As Cs₂O is added, GeO₅ units form, then decline

Broadening of a $T^{N}(r)$ peak

- A $T^{N}(r)$ peak is broadened due to 3 factors:
 - 1. Real-space resolution (because Q_{\max} is not ∞)
 - 2. Thermal motion of atoms (a Gaussian distribution)
 - 3. Static distribution of interatomic distances

- If a $T^{N}(r)$ peak is symmetric it can be fitted with a resolution-broadened Gaussian
- If a $T^{N}(r)$ peak is not symmetric...
 - it can be fitted with multiple peaks
 - it can be integrated

Peak fitting

$$n_{lm} = \frac{r_{lm}A_{lm}}{(2 - \delta_{lm})c_l\bar{b}_l\bar{b}_m}$$

- The fit gives...
 - Accurate bond length $r_{\text{GeO}} = 1.7369(2) \text{ Å}$
 - Distribution of bond lengths $\langle u_{\rm GeO}^2 \rangle^{1/2} = 0.0422(3) \,\text{Å}$
 - Area $A_{\rm GeO}$ gives Ge-O coordination number...

$$n_{\text{GeO}} = \frac{r_{\text{GeO}} A_{\text{GeO}}}{2c_{\text{Ge}} \bar{b}_{\text{Ge}} \bar{b}_{\text{O}}} = 4.032(8)$$

Ideally we expect coordination number $n_{\mathrm{GeO}}=4$ for a perfect network of $\mathrm{GeO_4}$ tetrahedra

Peak fitting

- GeO₂ glass is simple example, fitting one peak
- But many peaks can be fitted in the same way
 - example is rutile GeO₂

- For a glass, coordination numbers are not already known
- If a crystal structure is ordered then coordination numbers are already known, and are fixed in fitting

Software

- The Windows software used to make the plots in this presentation is available free at http://alexhannon.co.uk
- This includes fitting software pfit for fitting $T^{N}(r)$

Correlated motion

- For $T^{\rm N}(r)$ thermal motion broadens each peak according to the variance $\langle u_{lm}^2 \rangle$ in the distance between atoms r_{lm}
- Crystallography is fundamentally different it treats atoms as independent oscillators, with no dependence on distance between atoms

Correlated motion

• For $T^{\rm N}(r)$ thermal motion broadens each peak according to the variance $\langle u_{lm}^2 \rangle$ in the distance between atoms r_{lm}

• Correlations between motions of atoms cause $\langle u_{lm}^2 \rangle$ to be smaller for short distances, especially if atoms are

bonded

(Jeong et al, Phys Rev B 2003)

Correlated motion

• For $T^{\rm N}(r)$ thermal motion broadens each peak according to the variance $\langle u_{lm}^2 \rangle$ in the distance between atoms r_{lm}

• Correlations between motions of atoms cause $\langle u_{lm}^2 \rangle$ to be smaller for short distances, especially if atoms are

bonded

A simple model for this behaviour is

$$\langle u^2 \rangle^{1/2} = \sqrt{\langle u^2 \rangle_0 - \frac{\delta_2}{r^2}}$$

(Jeong et al, Phys Rev B 2003)

The error peak

$$T^{N}(r) = T^{0}(r) + \frac{2}{\pi} \int_{0}^{\infty} M(Q)Qi^{N}(Q) \sin rQ \, dQ$$

- Fourier transform requires integration of $i^{N}(Q)$ over wide Q-range.
- For reliable results...
 - Normalisation must be consistent over full Q-range
 - Self scattering must be subtracted well
 - All corrections must be done as well as possible (attenuation, multiple scattering, backgrounds,...etc)
- But note, most corrections change slowly with Q
- Badly corrected data have large error peak at low r

Absorption

- Absorption cross-sections are usually proportional to wavelength λ
- Liquid CCl_4 uncorrected data show strong absorption at low Q
- This leads to large error peak at low r

Self scattering

- The self scattering $I^{Self}(Q)$ changes slowly with Q
- Before the Fourier transform, $I^{\mathrm{Self}}(Q)$ is subtracted from the total scattering I(Q)

 $i(Q) = I(Q) - I^{\mathrm{Self}}(Q)$

Composition and Density

 For reliable results, such as coordination numbers, it is <u>essential</u> to know the composition and the density of the sample

$$T^{N}(r) = T^{0}(r) + D^{N}(r)$$
$$= 4\pi r g^{0} \langle \bar{b} \rangle_{av}^{2} + D^{N}(r)$$

average scattering length $\left\langle \overline{b} \right\rangle_{\mathrm{av}}$

$$T^{N}(r) = \sum_{l,m} c_{l} \bar{b}_{l} \bar{b}_{m} t_{lm}(r)$$

$$n_{lm} = \frac{r_{lm} A_{lm}}{(2 - \delta_{lm}) c_l \bar{b}_l \bar{b}_m}$$

- For reliable results, such as coordination numbers, it is essential that $T^{\rm N}(r)$ is normalised correctly.
- Even after careful corrections, the normalisation may not be perfect for various possible reasons:
 - number of atoms in beam not known exactly
 - sample-dependent background, etcetera...
- The low r region of $T^{\rm N}(r)$ depends on only composition and density, and can be used to correct the normalisation

$$T^{N}(r) = T^{0}(r) + D^{N}(r)$$
$$= 4\pi r g^{0} \langle \bar{b} \rangle_{av}^{2} + D^{N}(r)$$

$$T^{N}(r) = T^{0}(r) + D^{N}(r)$$
$$= 4\pi r g^{0} \langle \bar{b} \rangle_{av}^{2} + D^{N}(r)$$

- For example, crystalline Y_2O_3 . Coordination number should be $n_{YO}=6$
- Without low r correction, $n_{\rm YO}=6.53$ is obtained
- And at low r, $D^{N}(r)$ is not consistent with the average density term $T^{0}(r)$

$$T^{N}(r) = T^{0}(r) + D^{N}(r)$$
$$= 4\pi r g^{0} \langle \overline{b} \rangle_{av}^{2} + D^{N}(r)$$

- For example, crystalline Y_2O_3 . Coordination number should be $n_{YO}=6$
- Without low r correction, $n_{\rm YO}=6.53$ is obtained
- And at low r, $D^{N}(r)$ is not consistent with the average density term $T^{0}(r)$

$$T^{N}(r) = T^{0}(r) + D^{N}(r)$$
$$= 4\pi r g^{0} \langle \overline{b} \rangle_{av}^{2} + D^{N}(r)$$

• Data were re-scaled so that at low r, $D^{N}(r)$ is consistent with the average density term $T^{0}(r)$

$$T^{N}(r) = T^{0}(r) + D^{N}(r)$$
$$= 4\pi r g^{0} \langle \bar{b} \rangle_{av}^{2} + D^{N}(r)$$

- Data were re-scaled so that at low r, $D^{\rm N}(r)$ is consistent with the average density term $T^0(r)$
- After this correction, $n_{\rm YO}=5.93$ is obtained

Software to simulate $T^{N}(r)$ for crystals

- XTAL software to simulate $T^{\rm N}(r)$ for crystal structures is available free at http://alexhannon.co.uk
- The software includes detailed consideration of thermal broadening, including correlated motion

Crystal simulations

• $T^{N}(r)$ was measured for ${}^{7}\text{Li}_{2}\text{CO}_{3}$ to investigate thermal displacement of Li.

Crystal simulations

- $T^{N}(r)$ was measured for ${}^{7}\text{Li}_{2}\text{CO}_{3}$ to investigate thermal displacement of Li.
- Typical M-O thermal widths are $u \sim 0.05 \text{\AA}$
- For Li₂CO₃ the thermal widths are...

1.
$$u_{CO} = 0.039$$
Å

2.
$$u_{\text{LiO}} = 0.094 \text{Å}$$

$$u_{00} = 0.047$$
Å

- The C-O and O-O widths in CO₃ groups are unusually small, due to the strong bonds
- The Li-O width is unusually large, due to the large thermal displacements of <u>light</u> Li

Key points

- Real-space resolution depends on value of Q_{\max} (maximum momentum transfer)
- Termination ripples are minimised by Fourier transform with a modification function (e.g. Lorch function)
- Correlation function peaks are broadened for 3 reasons:
 - 1. Real-space resolution (because Q_{max} is not ∞)
 - 2. Thermal motion of atoms (a Gaussian distribution)
 - 3. Static distribution of interatomic distances
- $T^{N}(r)$ peak area depends on coordination number
- Reliable results depend on good corrections and normalisation

Thanks for listening! Any questions?