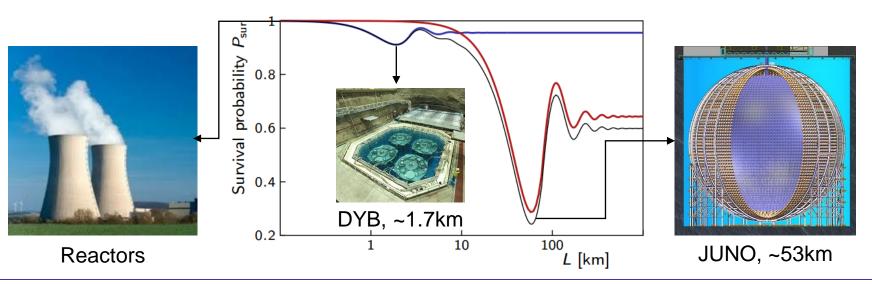
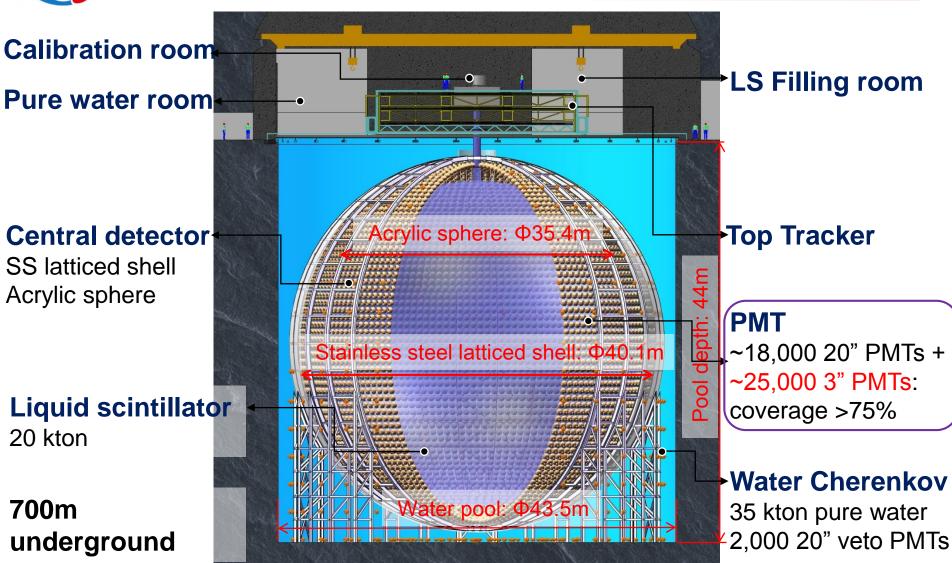


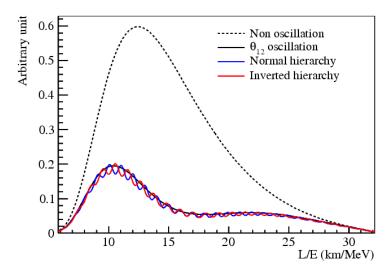
Double Calorimetry System in JUNO

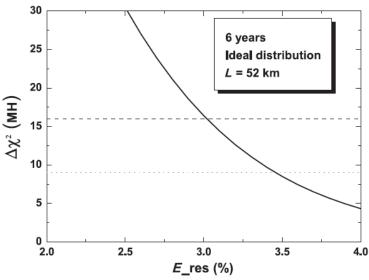

Miao HE On behalf of the JUNO collaboration

TECHNOLOGY AND INSTRUMENTATION IN PARTICLE PHYSICS'17
Beijing, China, 2017/05/23


Jiangmen Underground Neutrino Observatory

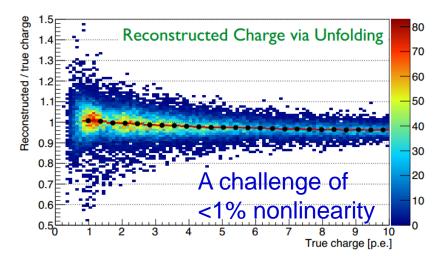
- JUNO: a multipurpose neutrino experiment in Guangdong, China
 - 20kton liquid scintillator, 3%@1MeV energy resolution, 700m underground
 - A unique way to determine mass hierarchy using reactor antineutrinos by the interference between Δm_{31}^2 and Δm_{32}^2 .
 - First experiment to measure solar and atmospheric mass splitting simultaneously. <1% precision to θ_{12} , Δm_{21}^2 and Δm_{31}^2 (Δm_{32}^2).
 - Large detector volume, good resolution and low background allow rich physics goals: supernova, geo-, solar ... neutrinos
 - Long term possibility under consideration: accelerator neutrino, $0\nu\beta\beta$...

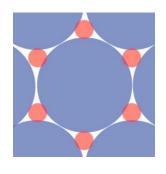

JUNO detector



Energy resolution

- Determination of mass hierarchy requires precision measurement of energy spectrum
- Sensitivity heavily depends on the energy resolution
- JUNO aims for 3%/√E(MeV)
 - Large number of photoelectrons:
 high light yield, high transparency
 liquid scintillator, high optical
 coverage and high QE 20-inch PMT.
 - ~1200PE@1MeV→2.89% statistical fluctuation
 - Room for systematics: <1%





Double Calorimetry

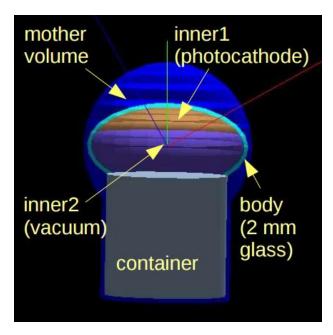
- Large-PMT (LPMT): measure energy via "charge integration", increase photon statistics → stochastic effect
- Small-PMT (SPMT): measure energy via "photon counting", control systematics → non-stochastic effect

Nonlinear response of LPMT due to the distortion of output waveform

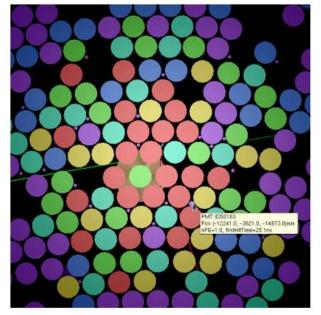
Non-linearity (single channel) Non-uniformity (position dependent)

Resolution deterioration

(full detector)

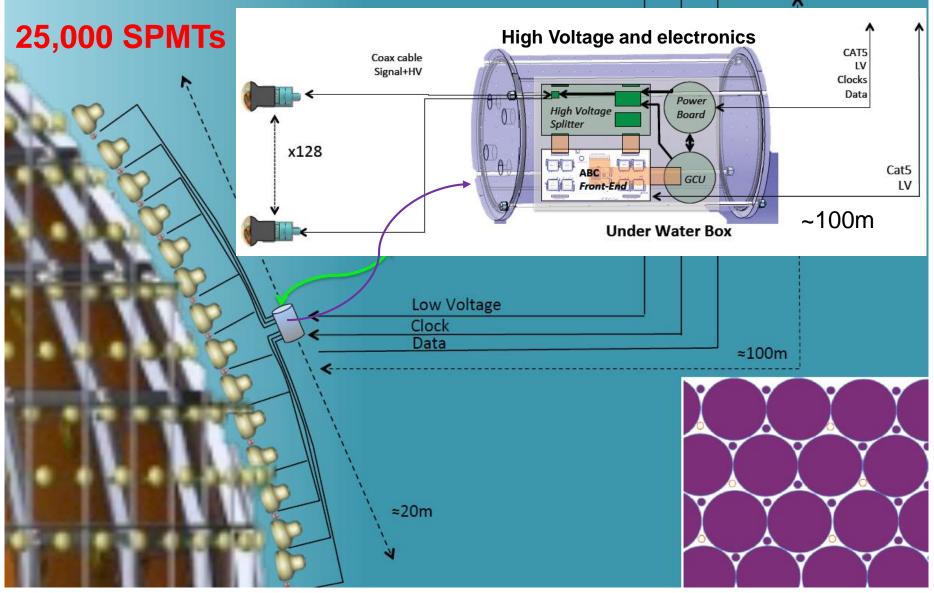

SPMT physics

- Calibration of non-linear response of LPMT
- Solar parameters measurements with *partly independent* systematics
- Help reconstruction for high energy physics: muon, atmospheric v...
- Help detection of supernova neutrino



Small PMT simulation

- Implementation of two PMT systems with Geant4 in the JUNO offline software framework.
- With realistic geometry and photon detection efficiency, ~30 PEs/MeV for 25,000 SPMTs, 2% of LPMTs.


Implementation of a single small tube in Geant4.

A simulated event with PMT responses, **color** corresponds to number of PEs in a PMT.

SPMT - Sketch

Bidding of SPMT

- An international bidding on May 8.
- Hainan Zhanchuang (HZC)
 photonics have been chosen as our supplier.
- HZC will provide 25,000
 (+1,000 spares) 3.1-inch
 XP72B22 tubes in the next
 2.5 years.
- HZC is also going to produce HV divider and do potting for all PMTs.
- Contract to be signed this week.

Parameters	HZC's response
QE×CE	24% (>22%)
@ 420 nm	
TTS(FWHM) of	<5ns
SPE	
P/V ratio of SPE	3 (>2)
SPE signal width	35% (<45%)
(sigma)	
Dark rate @ 1/4 PE	1kHz (<1.8kHz)
QE uniformity	<30% in Ф60mm
Pre/after pulse	<5%, < 15%
ratio	
Nonlinearity	<10%@1-100PE
Radioactivity	238U: <400ppb,
	232Th: <400ppb,
	40K: <200ppb

HZC's 3.1" PMT

Photomultiplier

10-stage 80mm (3.1"), Round tube

Application
√ High energy physics

Description

Window material

Refr. Index at 420nm

Photocathode

Features
√ High Quantum Efficiency
√ Low profile

Borosilicate low K

1000 2000

1

-0.3

Тур

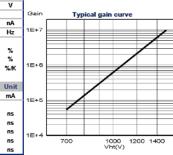
3.5

5

Bi-alkali

1.54

usntum Efficiency
ofile


Sk (mA/W)

Typical spectral

200
100

1,0

Multiplier structure	Box and Linear focused			
Photocathode characteristics	Min	Тур	Max	Unit
Spectral range:		290-700		nm
Maximum sensitivity at		404		nm
Sensitivity:				
Luminous		110		μA/lm
Blue *	10	12		μA/ImF
Quantum Efficiency, at 404 nm	22	25		%
Quantum Efficiency, at 470 nm	18	20		%
Characteristics with voltage divider A	Min	Тур	Max	Unit
Gain slope (vs supp. Volt., log/log)		6.8		
For an anode blue sensitivity of		50		A/lmF
Supply voltage *	900	1150	1300	٧
Gain		3x10 ⁶		
Anode dark current *		10	30	nA

400 500 600 Wavelength (nm)

Recommended Voltage Divider

Mean anode sensitivity deviation Long term (16h) After change of count rate

For a supply voltage of : 1000V

Linearity (2%) of anode current up to

Duration at half height

at 420 nm

Rise time

Transit time

Vs temperature between 0 and +40°

Center to edge difference (C.E.D)

Time resolution at 511 keV with LSO

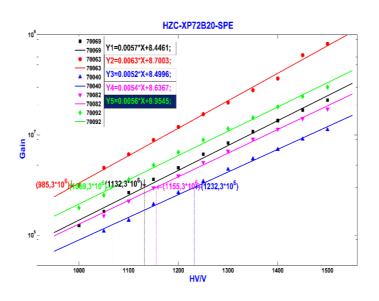
Type A for maximum gain

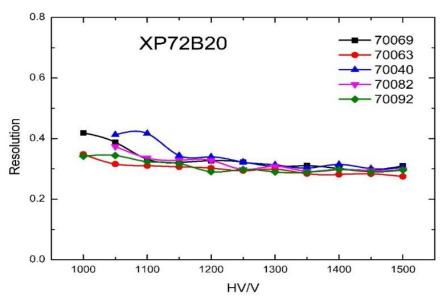
K D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 A

* characteristic mentioned on the test ticket of the tube

XP72B22 • XP72B22: a JUNO custom design

- Upgrade of XP72B20
- Dedicated R&D of better timing with JUNO input
- 35 + 5(with potting)
 PMT samples on hand

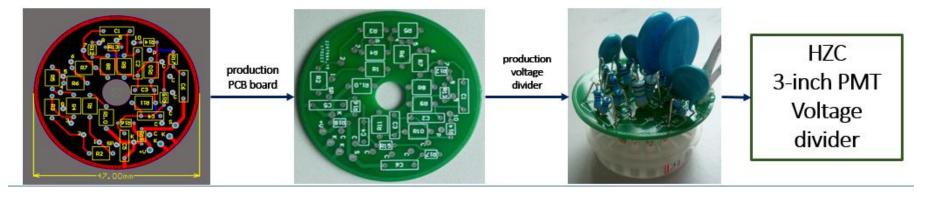


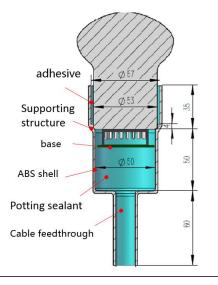


XP72B20 samples test

Company	PMT	No. of PMT	Voltage for Gain 10 ⁷ /V	P-V Ratio	Resolution/ %	QE @420nm/ %	TTS/ns	Dark Rate @1/3PE /Hz
HZC	XP72B 20	70069	1400	5.6@3X10 ⁶ gain 7.1@1X10 ⁷ gain	35.2%@3X10 ⁶ gain 29.9%@1X10 ⁷ gain	23.9	4.5	394

Gain VS high voltage

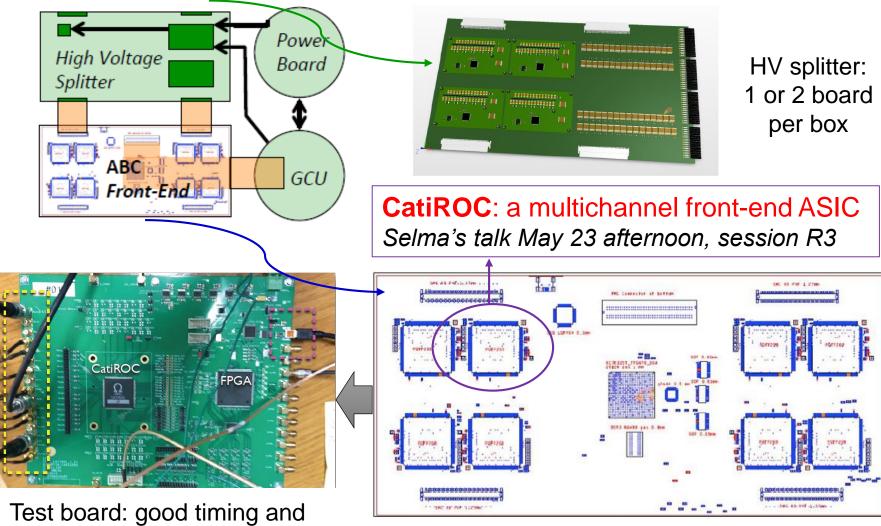

Good single photon resolution: ~35%


HV divider and Potting

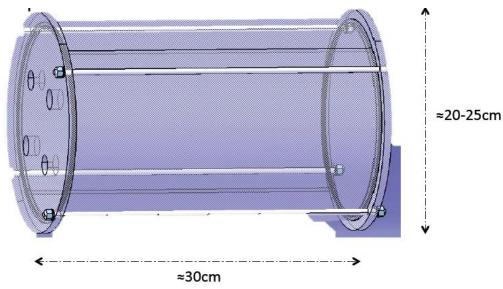
Being designed by IHEP, implemented by HZC

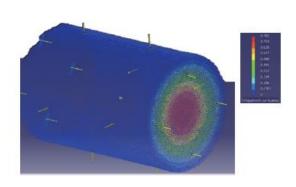
Re-design of the divider to fit the potting shell: Φ<48mm

Preliminary design and 50 dummy PMTs potting test



charge resolution


Electronics

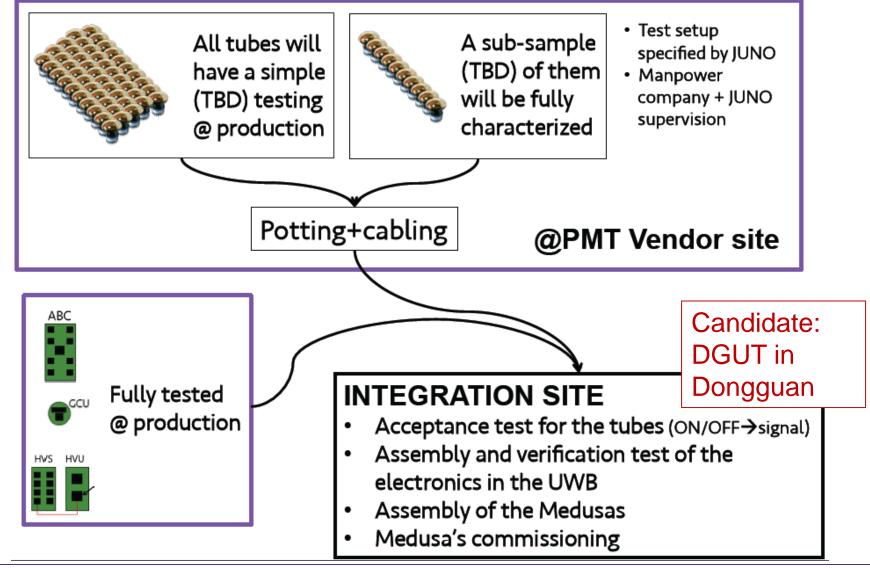


ASIC Battery Card (ABC) with 8×CatiROC

Underwater box

FEA for underwater box

Preliminary design: a stainless steel container


- ≈5mm thickness commercial tube
- 2 caps ≈12mm thickness
- Final dimensions to be defined with electronics
- R&D of HV + waterproofing connector with reasonable price for easier installation

Multichannel connector

Mass testing and integration

Summary

- Double calorimetry system in JUNO: 18,000 LPMT + 25,000 SPMT
 - Control both statistical uncertainty and systematics for 3% energy resolution
- Production of SPMTs is started soon, finished by the end of 2019
- Electronics and underwater box are being designed and optimized.
- Finish integration and installation in 2020