

Silicon Tracker for I-PARC muon g-2/EDM experiment

Taikan Suehara (Kyushu University)

for the J-PARC g-2/EDM (E34) collaboration

 $\vec{d} = \eta \left(\frac{q}{2mc}\right) \vec{s}$ Electric dipole moment SM: ~ 2 x 10⁻³⁸ e cm, lepton T violation term

Muon g-2: Fermilab vs J-PARC

In uniform magnetic field, muon spin rotates ahead of momentum due to $g_{-2} \neq 0$

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
BNL E821 approach
$$\gamma = 30 \ (P = 3 \text{ GeV/c})$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
FNAL E989
$$J - PARC E34$$

J-PARC E34

P= 3.1 GeV/c , B=1.45 T

P= 0.3 GeV/c , B=3.0 T

J-PARC E34 will be a compact and independent experiment complementary to FNAL E989 (independent systematics)

J-PARC muon g-2/EDM (E34) Collaboration

144 members, 51 institutions from Canada, Czech, France, Korea, Japan, Russia, UK, US Official collaboration recently formed (Spokesperson: T. Mibe)

The 13th collaboration meeting on muon g-2/EDM at J-PARC Nov. 30 – Dec. 2, 2016

J-PARC Facility (KEK/JAEA)

Neutrino Beam To Kamioka

Main Ring 30 Gold

GeV

chrotron

Hadron Hall

Bird's eye photo in Feb. 2008

Positron Tracker

Requirements:

- 0.1 ppm freq. measurement
 40 μs live time
- Event rate: 1400-10 kHz /strip
- Tracking of 100-300 MeV positrons
- 3 Tesla magnetic field

10 μrad angular alignment (for EDM measurement)

48 layers (vanes)

Vane structure

4 x 2 (R/Z) SSSD per half-vane 32 x 2 ASICs (128 ch / ASIC)

Silicon sensor Half-vane structure funded by JSPS (2015-19)

Silicon Sensor

Characteristics of sensor

Readout ASIC: SliT128A (2015)

128 ch A/D mixed ASIC 200 MHz binary digitizer for 5 ns timing & ToT 8 K words (41 μs active time) Silterra 0.18 μm process Modification ongoing (TEG chip will come soon)

TELEVISION DE LA CALIFICIA DE LA CALIFICA DE LA CALIFICAL DE LA CALIFICALIFICA DE LA CALIF

AND LOUGHLAND

SliT128A (9 x 10 mm)

Test pulse

SliT128A evaluation board

Two types of evaluation boards developed

- Single SliT128A test board (2015)
 - Optimization of wire-bonding
 - Evaluation of SliT128A performance
- Multi SliT128A board (2016)
 - For test of sensor with real signal
 - Preparation of making real vanes
- Specifications
- 100/100 μm (L/S) wire-bonding pads
- No capacitors under ASIC (for stable WB)
- Artix7 FPGA
- SiTCP readout with optical connector
- Voltage supply
 - 3.3V, 2.4V, 1.5V, 1.2V, 1.0V (FPGA)
 - 2.4V, +/- 0.9V (ASIC)

FPC development

SliT128A input pads: 125 µm pitch houndstooth pattern

FPC (polyimide) pitch adapter Minimum spacing: 20 μm

Pitch adapter for SliT128A multi

For making "real" vanes, we need large FPCs with fine pitch. Investigation on possible specification has started, aiming at 40-50 µm line pitch Taikan Suehara et

Assembly of the test system

Setup for WB

1. Fix sensor board and SliT128A multi board on mother frame on Al plate

- 2. Glue pitch adapter, ASIC and sensor
- 3. Wire bonding of sensor and PA, PA and ASIC, ASIC and multi board

Performance evaluation

∆t [ns] -10ШР MP -20 ഹ ŝ -30Time walk -40 10 20 0 5 15 TP charge [fC]

Noise measurement with test pulse by S-curve method: ENC = \sim 800e (S/N \sim 29 on MIP)

Dynamic range: Linearity < 5 % up to 4 MIPs

Time walk of 11.5 ns (0.5-3 MIP) observed: try to improve in the next version (< 5 ns preferred) Taikan Suehara et al., TIPP2017 @ Beijing, 23 May 2017 page 16

Other developments

• DAQ

- Based on DAQ middleware (KEK)
- Synchronization on multiple FPGA under work
- Tracking software
 - Modular framework under study
 - Hough transform for track finding
 - Kalman filter (GenFit) for tracking
- Alignment
 - Laser alignment (with freq-comm technique) under study
- Timing synchronization with GPS
- Thermal study with novel heat pipe

Summary and Prospects

- J-PARC E34: muon g-2/EDM measurement with novel method complementary to BNL/FNAL exp.
 - Target date: ~2019
- Silicon tracker is the main detector component
- >200 SSSD produced at HPK, with excellent quality
- SliT128A ASIC has been developed in KEK, meeting basic quality criteria, upgrade ongoing
- First detector prototype fabricated with a PCB with 4 ASICs connected with automatic wire-bonding
 - First test OK, preparing 2 layers/16 ASICs for MuSEUM run in June
- First real vane will be ready in ~ 1 year
 Taikan Suehara et al., TIPP2017 @ Beijing, 23 May 2017 page 19

Muon g - 2: current status

Contribution	$a_{\mu} imes 10^{11}$	Reference	
QED (leptons)	$116\;584\;718.853\pm~0.036$	Aoyama et al. '12	
Electroweak	153.6 ± 1.0	Gnendiger et al. '13	
HVP: LO	6889.1 ± 35.2	Jegerlehner '15	
NLO	-99.2 ± 1.0	Jegerlehner '15	
NNLO	12.4 ± 0.1	Kurz et al. '14	
HLbL	116 ± 40	Jegerlehner, AN '09	
NLO	3 ± 2	Colangelo et al. '14	
Theory (SM)	116 591 794 \pm 53		
Experiment	116 592 089 ± 63	Bennett et al. '06	
Experiment - Theory	295 ± 82	3.6 <i>σ</i>	

Hadronic light-by-light scattering in muon g - 2 from strong interactions (QCD):

017 page 21

EDM signature

Fake EDM Signal by Misalignment

• EDM is measured from up-down asymmetry "A_{up}".

The alignment must be controlled with 10 µrad accuracy to measure EDM with $10^{-21}e \cdot \text{cm}$ (final goal).

Silicon sensor DC characteristics

測定項目	測定結果	理論値	
I-V	plateau were observed	-	
C total	3050 pF	3100 pF	
Full depletion voltage	~ 80 V	~ 80 V	
C interstrip	7.1 pF	3.0 pF + α	
Detector Capacitance	17 pF	9 pF + α	
C coupling	167 pF	164 pF	
R Polysilicon	~ 12 MΩ	5 ~ 15 MΩ	
50 50 40 50 50 50 50 50 50 50 50 50 5	180 175 170 175 170 165 160 165 160 155 155 145 145 140		

C interstrip

SliT128A: analog part

SliT128A: digital I/F

SliT128A without sensor

Requirement	SliT128A TEG Simulation	SliT128A TEG Result	SliT128A Result
~ 3 MIP	~4 MIP	~3 MIP	4 MIP
< 1600 e	1210 e	1070 e	430 e
< 100 ns	53.5 <mark>n</mark> s	96.0 ns	155 ns
< 5 ns	6.5 ns	14.6 ns	11.5 ns
	equirement ~ 3 MIP < 1600 e < 100 ns < 5 ns	Sliff128A TEG Simulation~ 3 MIP~4 MIP< 1600 e1210 e< 100 ns53.5 ns< 5 ns6.5 ns	SliTT28A TEG Simulation SliTT28A TEG Result ~ 3 MIP ~4 MIP ~3 MIP < 1600 e 1210 e 1070 e < 100 ns 53.5 ns 96.0 ns < 5 ns 6.5 ns 14.6 ns

Power consumption

n 5 mW/ch

Wire bonding

25 μm aluminum wire Bonding force: 8-9 g

