

The Challenge of HL-LHC

- HL-LHC will accumulate 3 ab⁻¹ of p-p collisions to achieve its physics goal.
- This will require operation at 200 collisions per bunch crossing.
 - Achieving physics performance very challenging at these PU rates.

24.05.2017

CMS ECAL

- ➤ Homogeneous, compact, hermetic, fine grain PbWO₄ crystal calorimeter
 - Emphasis on energy resolution
 - No longitudinal segmentation
 - See presentation by C.-M.Kuo
- ➤ Barrel (EB) :
 - |η| < 1.48
 - 36 Super Modules: 61200 crystals
 - $(2.2 \times 2.2 \times 23 \text{ cm}^3) \sim 26X_0$
- ➤ Phase II Upgrade of the ECAL :
 - New readout electronics with faster shaping and digitisation, full readout at 40 MHz and accommodating up to ~12 μs trigger latency.
 - Lower temperature (8 °C or less).
 - See presentation by P. Barria and poster by F. Meng.
- > CMS Characteristics:
 - Tracker coverage: |η| < 2.5;</p>
 - CMS Magnetic field: B = 3.8 T
 - ECAL fully contained inside the coil

Photon Timing in $H\rightarrow \gamma\gamma$

- $ightharpoonup H o \gamma \gamma$ important mode for precision Higgs physics.
- Clean signal with large visible cross section makes it a key driver for measurements of Higgs production and decays dynamics.
- Standard candle for di-Higgs to bbγγ.
- \triangleright Vertex ID uses Σp_T to find hard vertex.
- ightharpoonup At HL-LHC, many PU vertices with high Σp_{T} .
- With a timing measurement for two photons, can calculate the z and t location of the vertex.

4D Triangulation with Photon Timing

- With two time and position measurements eg. from two photons and with the constraint from the beam axis x and y location, the vertex x and t can be calculated analytically.
- Equivalent to GPS with two satellites.

Physics impact of Photon Vertexing

- \rightarrow H \rightarrow γγ primary vertex selection efficiency reduced from 80% in current LHC data to 40% at 140 PU and even further at 200 PU.
- > Dramatic reduction of effective mass resolution, equivalent to a loss in effective luminosity for statistically limited measurements.
- ➤ Precision timing in the ECAL, combined with precision timing tags on tracks, will recover with deterioration almost fully.

CMS ECAL Upgrade for HL-LHC

- PbWO₄ crystal matrix, APDs & overall mechanical structure will remain unchanged.
- > The frontend and very frontend electronics readout will be replaced:
 - satisfy increased trigger latency requirement (up to 12.5 s), L1 accept rate (750 kHz)
 - cope with increased APD dark current, better identification of beam induced APD noise and higher data rates.
- APD/cable impose effective bandwidth cutoff at around 35 MHz.
- Trans Impedance Amplifier (TIA) based very front end readout ensures optimal exploitation of ECAL timing capabilities.
- Talk of P. Barria, poster of F. Meng

Timing Performance current CMS ECAL

Results from test beams and pp collision data at LHC:

- ightharpoonup Electron showers from Zightharpoonupee decay Δt_{TOF} : ~270 ps, single channel : ~190 ps, without path length correction : ~380 ps
- ➤ Constant term of resolution : ~20 ps in test beam, ~70 ps in situ (same clock).
- > Studies on jet timing vertex resolution suggest very promising performance.

Scintillation Light Time Spectrum

- Timing information is extracted from the leading edge of the signal the rise time of the light output is important.
- Crystal scintillators feature intrinsic signal rise times of few 10 ps. For PbWO₄ 60 ps have been measured in a cube of 2x10x10 mm³.
- ➤ S. E. Derenzo, M. J. Weber, W. W. Moses and C. Dujardin. "Measurements of the intrinsic rise times of common inorganic scintillators." IEEE TNS, 47:860-864, 2000.

Figure 7: PbWO₄ 2 x 10 x 10-mm painted black on five sides. Best fit rise time is 60 ps.

Optical Transit Time Spread

Scintillation light propagation through the crystal takes time and causes dispersion of the pulse shape.

0.0

CMS PbWO₄ Light Timing Structure

- CMS ECAL MC studies for Phase II upgrade.
- > Light extraction at one end of the crystal.
- Precise understanding of the pulse shape needed to optimize readout electronics.
- > APD/cable impedance will be the limiting factor.

Test Beam Results

- CMS ECAL crystal matrix with TIA prototype, digitized at 5 GHz.
- ➢ Offline reduction of sampling rate to explore minimal digitization rate satisfying our specs. Baseline design now assumes 160 MHz.
- Timing extracted from template fit to the pulse shape similar to the pulse reconstruction in CMS.
- Micro-Channel-Plate sensor as timing reference for the incoming beam particle.

- Initial results on this prototype meet design specs.
- \succ 30 ps resolution @ A/ σ = 250.
 - Equivalent to 25 GeV photons (@100 MeV noise, HL-LHC start),
 - 60 GeV (@240 MeV noise, HL-LHC end)
- Test with advanced prototype with integrated ADC in June 2017.

Summary

- CMS ECAL Phase II upgrade will enhance the timing performance of the detector to about 30 ps for photons from Higgs decays.
- Prototypes of readout tested in high energy beams meet the design goals.
- Additional precision timing capability enhancements of CMS detector being investigated.

Backup

HL-LHC Schedule

LHC

E = 7-14 TeV

 $L = 1 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

<PU> $\sim 40-60$

 \geq 50 fb⁻¹ per year 300-500 fb⁻¹ total

HL-LHC

E = 14 TeV

 $L = 5 \cdot 10^{34} \,\text{cm}^{-2}\text{s}^{-1}$

<PU> ~ 140

250 fb⁻¹ per year

3000 fb⁻¹ total

