Enhanced lateral drift sensors: concept and development.

TIPP2017, Beijing

Anastasiia Velyka, Hendrik Jansen DESY Hamburg

How to achieve a high resolution?

Decrease the size of the read-out cell, i.e. pixel or strip pitch

- > The number of channels increases
- > Less space on-chip per channel
- > Higher power dissipation

Miniaturisation has limits

- > Size of bump bonds, wire bond pads
- > Minimum of logic/processing on-chip

How to achieve a high resolution?

- increases effective area collecting charge
- increases material budget
- > doesn't work for thin sensors

charge distribution

Manipulating the electric field

- Repulsive areas split the charge cloud 50-50
 - > Apply this layer-wise
- > Achieve lateral enlargement of charge cloud independently of the incident position

Manipulating the electric field

Binomial design

- not enough charge sharing
- high value of N_{eff}
- high number of layers
- cluster size 3

$$N_{eff} = N_D - N_A$$

p+ -implants

ELAD design

+ enough charge sharing+ cluster size 2

$$V_{depl} = \frac{q_0 D^2 |N_{eff}|}{2\varepsilon_0 \varepsilon_r}$$

25.05.2017 | Anastasiia Velyka | TIPP2017 | Beijing

Concept of Enhanced Lateral Drift Sensors (ELAD)

- Sharing left AND right is non-optimal
 - threshold would kill the effect
 - > aim at cluster size 2
 - > controlled value of N_{eff}

TCAD Simulations

> As a tool for simulations, TCAD SYNOPSYS was selected.

Parameters for simulations:

- > Width, depth of implants
- > Distance within/to next layer
- Position/shift to neighbouring layer
- > Number of layers
- > Optimal doping concentrations for deep implants

Electric field profile for best charge sharing

SAIINHZAZ

TCAD Geometry

- P-spray isolation is implemented to the sensor geometry
- First and second layer are located in the epitaxial part of the sensor

150 µm

- 1/2 strip symmetry is chosen according to the boundary condition
- > TimePix3 geometry
 - > pitch 55×55 µm
 - pixel implant size 20 µm

TCAD Meshing

- Mesh parameters:
 - <mark>> <u>x</u>_{min} = 0.01 µm</mark>
 - **>** x_{max} = 10 μm
 - > y_{min} = 0.01 µm
 - **>** y_{max} = 10 μm
 - Doping dependent
- In each mesh point TCAD calculates Poisson's equation and the carrier continuity equations for holes and electrons.
- In the border of zones with different doping concentrations it is necessary to have a fine mesh.
- > Careful choice of parameters for successful simulation.

Device simulation

> Quasi stationary:

- Solve electric field
- Ramp voltage to the set value

> Transient:

- > Poisson's equation
- > Carrier continuity equations
- Traversing particles or arbitrary charge distribution

Simulations of the electric field

> The non-homogeneous electric field in the ELAD sensor is stable in time.

11

Drift with probe charge

> The drift path is changed by the implants.

Drift with MIP

- > Charge carriers created near an electrode is collected by it
- > The real part of the charge created beneath the deep implants area changes the drift path
 - > It is collected by two electrodes

Drift with MIP

In comparison to the usual design, with the same MIP position and applied voltage, in the ELAD sensor the charge is shared between two strips

TCAD simulations

> Number of collected charge for each strip

Production

In the epitaxial silicon growth process, a thin layer is grown on a single-crystal substrate.

> The temperature in the CVD process is 1100°C.

Process simulation for deep implants at a temperature of 1100°C.

The difference in size less than 1 µm

SPROCES

> Pros

- Higher resolution for same pitch size w/o B-field (sufficient Lorentz drift) nor tilted sensors (higher material budget)
- Maintain a fast signal (no coupling of readout entities)

> Cons

- No one tried this type of production before
- Costly due to multilayer processes, but save on cooling and readout bandwidth/computing power

Conclusions:

- Trying to achieve high position resolution without using smaller pitches.
- Simulations show that the charge sharing in the ELAD sensor is possible.
- > Contacts with companies concerning the production.

> Outlook

Perform simulations using different voltages and different MIP positions in TCAD

Production

19

Backup

25.05.2017 | Anastasiia Velyka | TIPP2017 | Beijing

GDS

pitch 55×55 µm

1st layer of implants

3d layer of implants

pixel implant size 20 µm

2nd layer of implants

25.05.2017 | Anastasiia Velyka | TIPP2017 | Beijing