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• The CUORE experiment searches for 
neutrino-less double beta decay of 130Te. 

• The expected signal are two electrons 
with a total kinetic energy of ~ 2.5 MeV. 

• The main background comes from α 
particles (residual radioactive 
contamination of the detector materials). 

• This background can be rejected 
detecting the Cherenkov light emitted 
only by β/γ interactions (the only ones 
above threshold).

Why high sensitivity cryogenic light detectors?
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CUORE
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Deep underground 
(3650 m.w.e.) in the 

INFN Laboratori 
Nazionali del Gran 

Sasso

• Improve the sensitivity of the next generation experiments searching for rare 
events: Neutrino-less double beta decay and Dark Matter interactions.
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Why high sensitivity cryogenic light detectors?

• Improve the sensitivity of the next generation experiments searching for rare 
events: Neutrino-less double beta decay and Dark Matter interactions.



4

Heat energy [keV]
0 1000 2000 3000 4000 5000 6000

Li
gh

t e
ne

rg
y 

[k
eV

]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
β/γ

α

130Te

Light detector

TeO2

Cherenkov light detection 
in TeO2 bolometer (CUPID)

N. Casali et al., Eur.Phys.J. C 75 (2015) 1, 12  
4
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1. High energy resolution < 20 eV 
RMS 

2. Large active area ~25 cm2 

3. Ease in fabrication and operation 

4. Scalability (~ 1000 channels size 
experiment) 

5. High radio-purity level 

6. Wide operation temperature range 
(5 - 20 mK)

The next generation requirements
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The light detectors for next generation bolometric 
experiments must satisfy these requirements:

Several works exploiting different technologies:

1) L.Pattavina et al., Journal of Low Temp Phys 
1-6 (2015) -> Ge Naganov-Luke with NTD

2) M. Biassoni et al., Eur.Phys.J. C75 (2015) 10, 
480 -> Si Naganov-Luke with NTD 

3) K.Schaeffner et. al, Astropart.Phys. 69 (2015) 
30-36 -> W-TES on SOS

4) M. Willers et al., JINST 10 P03003 (2015) -> Si 
Naganov-Luke + TES

5) CALDER -> KID -> THIS TALK

Up to now none of these technologies 
demonstrated to satisfy all the requirements



• Superconductors operated well below the 
critical temperature Tc 

• Biasing with high frequency AC current (ν ∼ 
GHz) they exhibit a kinetic inductance (Lk)  
-> caused by the inertia of the Cooper pairs 

• By coupling the superconductor with a 
capacitor, a high quality factor RLC circuit 
can be realized (Q~104 -105)  

• A photon interaction breaks the Coper 
pair -> the kinetic inductance changes -> 
the resonance shape and frequency 
change

6

Kinetic Inductance Detector:KID
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• Superconductors operated well below the 
critical temperature Tc 

• Biasing with high frequency AC current (ν ∼ 
GHz) they exhibit a kinetic inductance (Lk)  
-> caused by the inertia of the Cooper pairs 

• By coupling the superconductor with a 
capacitor, a high merit factor RLC circuit 
can be realized (Q~104 -105)  

• A photon interaction breaks the Cooper 
pair -> the kinetic inductance changes -> 
the resonance shape and frequency 
change
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Advantages:
• Natural multiplexing in the frequency 

domain 

• Excellent sensitivity -> baseline 
energy resolution ~eV 

• Stable response and operation in a 
wide temperature range if T << Tc

But..

• Poor active surface -> few mm2

1-2 mm2

Kinetic Inductance Detector:KID



• To get around the poor KID active surface an indirect 
detection of the photon interactions was proposed 

• KIDs are evaporated on a large (cm2) insulating substrate 
(Si or Ge) that mediates the photon interactions converting 
them into phonons  

•  ….. with a drawback: phonons collection efficiency 
9

Phonon-mediated approach
KID

phonons
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CALDER

3 main phases
1. Read-out and analysis tools; optimization of the detector geometry using Al resonator -> 80 

eV RMS 

2. Test of more sensitive superconductors, such as TiN, Ti+TiN, or TiAl -> resolution  < 20 eV 

3. Large-scale test of the final detectors on TeO2 array @ Laboratori Nazionali del Gran Sasso.

Cryogenic Wide-Area Light Detector with Excellent Resolution 
ERC Starting Grant, from March 2014
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CALDER
Cryogenic Wide-Area Light Detector with Excellent Resolution 

ERC Starting Grant, from March 2014

3 main phases
1. Read-out and analysis tools; optimization of the detector geometry using Al resonator -> 80 

eV RMS 

2. Test of more sensitive superconductors, such as TiN, Ti+TiN, or TiAl -> resolution  < 20 eV 

3. Large-scale test of the final detectors on TeO2 array @ Laboratori Nazionali del Gran Sasso.



Resonators characterization
Basic resonance parameter evaluation with a fit 
of the frequency sweep of the transmitted signal 
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N. Casali et al., J.Low.Temp.Phys. 184 (2016)
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Detectors characterization
phase

amplitude
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The energy depositions are 
originated by calibrated optical 
pulses (400 nm led bursts) in 
the range between 2 and 30 

keV; and X-rays from 55Fe/57Co 
(as cross-check for the energy 

calibration)

From the center of the 
resonance loop we 

monitor the amplitude 
and phase variations
induced by energy 

depositions
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Detector response to optical pulses
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Resolution constant in a wide 
temperature range (10-200 mK)

Combining phase and amplitude we 
obtained 82±4 eV

L. Cardani et al, Appl.Phys.Lett. 107 (2015) 093508 
L. Cardani et al, Appl.Phys.Lett. 110 (2017) 033504
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Phase noise excess
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Amplitude noise is consistent with the noise temperature of the cold 
amplifier (TN ~ 7 K). The phase one is affected by an excess at low 

frequency.

It is not generation-
recombination or two level 

system noise 
(constant with temperature) 

It seems not originated by 
electronic read-out chain 

Its origin is still under 
investigation
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CALDER
Cryogenic Wide-Area Light Detector with Excellent Resolution 

ERC Starting Grant, from March 2014

3 main phases
✓1. Development of the acquisition and analysis tools and optimization of the detector geometry -> Aluminum 

resonator; well known material, target resolution of about 80 eV RMS 

2. Test of more sensitive superconductors, such as TiN, Ti+TiN, or TiAl, in order to lower the energy 
resolution  < 20 eV 

3. The optimized light detectors will be coupled to an array of TeO2 bolometers to prove the potential of this 
technology @ Laboratori Nazionali del Gran Sasso.
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CALDER phase2
• Testing more sensitive superconductors

First test on TiAl and AlTiAl in collaboration with Institut Neel Grenoble (J. 
Goupy, M. Calvo and A. Monfardini) and CSNSM-IN2P3 Paris (H. Le Sueur) 

Encouraging results: 30 eV RMS reached (paper in preparation)

Al TiAl Ti+TiN TiN
sub- stec.

Tc [K] 1,2 0.6-0.9 0.5-0.8 0,5

L [pH/
square] 0,5 1 6 up to 50

�E / TC

✏
p
QL



Conclusions

• The CALDER project aims to develop the light detector 
for the next generation bolometric experiments 
exploiting KIDs 

• The phase1 of the project is accomplished: Al 
resonator with 80 eV baseline RMS 

• An excess noise in phase direction is always present 
and its origin is still under investigation 

• Encouraging results from the first AlTiAl resonator (30 
eV RMS)

18
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Thank you for the attention !

CALDER public webpage: 
http://www.roma1.infn.it/exp/calder/new

http://www.roma1.infn.it/exp/calder/new


BACKUP
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Al detector optimization
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After several
tests

1. Single KID design -> Absence of cross-talk and/or competition among 
pixels in the absorption of the propagating phonons. 

2. Increase active surface -> higher phonons collection efficiency 
3. Increase the signal amplitude -> Higher kinetic inductance fraction and 

higher Q 
4. Study several thickness Al films -> 25, 40 and 60 nm
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Resonance parameter evaluation 
The transmitted microwave through feed-line (S21) is affected not only by the resonator:  
1) read-out chain
2) impedance mismatches in proximity of the KID 1 
3) distortion of the resonance due to power absorbed by the resonator 2

S
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S21 is fitted in the (I,Q, f) space 
with the frequency sweep:

[1] M. S. Khalil et al., J. Appl. Phys. 
111, 054510 (2012) 
[2] L. J. Swenson et al., J. Appl. 
Phys. 113, 104501 (2013) 
[3] N. Casali et al., 
J.Low.Temp.Phys. 184 (2016)
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Detector operation: optimal microwave power

The detectors are 
operated in the most 

sensitive point, 
where the signal-to-
noise ratio (S/N) is 

maximum

Maximum
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CALDER phase1: improved detector layout

2 mm

2 
m

m

2 
m

m

1.4 mm

60 nm thick

Active surface increase from 2.4 to 4 mm2 -> Efficiency from 6.1 to 9.4% 
 Thickness 60 nm -> Qi > 2x106 

Q ~ 150x103 -> Signal in both phase and amplitude increased by a factor 6

The signal to noise ratio in 
amplitude is competitive 
(better in the wp) with the 

phase one 
We attribute this to the 
high values of Q and Qi



Temperature scan: Δf/f0
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