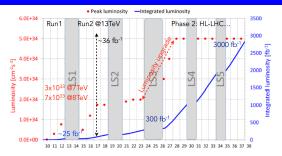


中國科學院為能物記研究所 Institute of High Energy Physics Beijing Chinese Academy of Sciences

TIPP - 22-26 May 2017, Beijing


Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

Francesco Romeo

On behalf of the CMS collaboration

Introduction

Motivation for the High Granularity Calorimeter (HGCal) in HL-LHC

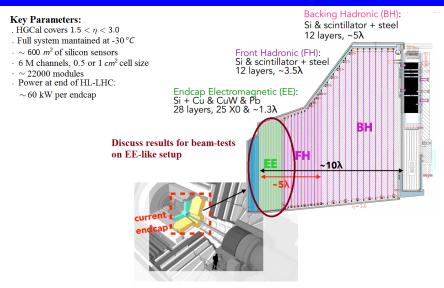
In the High-Lumi (HL) LHC era, we need to maintain:

- smoothly running detector
- high quality object reconstruction/identification

Extreme conditions in endcap region

- High radiation (up to $10^{16} n/cm^2$ at $\eta \sim 3$)
- High pileup (140-200)

Use silicon-based HGCal detector


- Radiation tolerant
- High granularity and fast timing

For more motivations, please refer to talk by Florian Michael Pitters

francesco.romeo@cern.ch (IHEP Beijing)

Introduction

HGCal overview

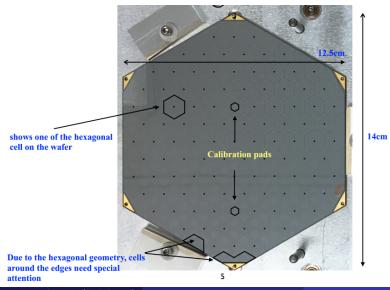
More on HGCal in the talk by Florian Michael Pitters

2016 beam-tests at FNAL and CERN

Primary goals:

- Proof of concept of the baseline HGCal design with a closely spaced stack-up of modules
- Validation of the overall design concept of a hexagonal silicon sensor mounted on a baseplate with a PCB with holes for the wire-bonding

Performance of silicon-tungsten prototype modules:


- Studies:
 - Pedestal and noise
 - Single particle calibration
- Measurements:
 - Longitudinal and transverse shower shapes
 - Energy, position, time resolution

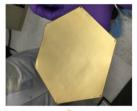
• Compare results with simulation

Setup

Hexagonal Si-Sensor (128 channels)

"p on n" with 200 µm active thickness, made from 6" wafer, cell size 1.1 cm²

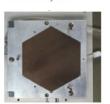
francesco.romeo@cern.ch (IHEP Beijing)


Module assembly

Glued stack of **baseplate**, kapton, sensor and 2 PCBs

Golden plated Kapton . Connection to the backplane of the silicon sensor for bias voltage

Setup

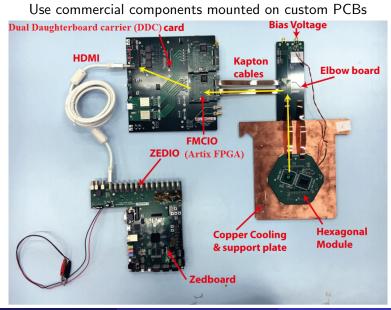

1st PCB wire-bonded to

sensor

CuW baseplate

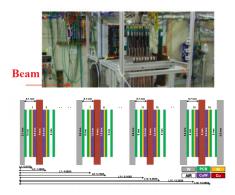
- . Mechanical rigidity . Coefficient thermal expansion close to that of silicon
- . Part of calorimeter absorber

Silicon sensor

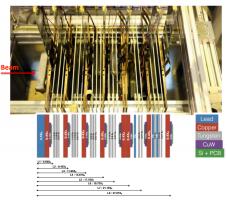


Full module . Double PCB layer readout . 2 'Skiroc2' ASIC, 64 ch each (originally developed for CALICE)

Setup


Data Acquisition System

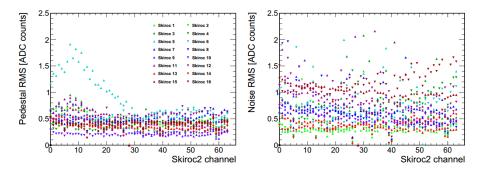
Setup


Data taking setup & conditions

FNAL

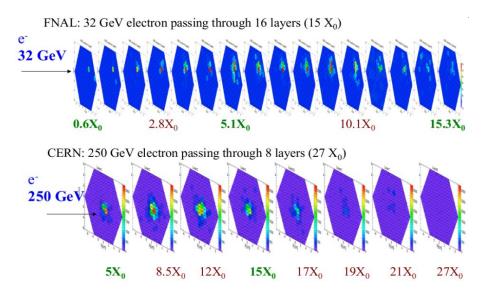
- 16 modules, 15 X₀
- e beam (4-32) GeV
- p beam 120 GeV

CERN



- 8 modules, 5-27 (6-15) X₀
- e beam (20-250) GeV
- $\pi(\mu \text{ from } \pi)$ beam 125 (120) GeV

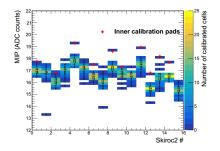
Studies

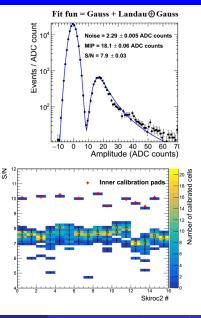

Pedestal and noise stability

From CERN test with 8 layers (16 Skiroc2 ASICs)

Pedestal and noise stable within 2 ADC count (1 ADC \approx 1/17 MIP)

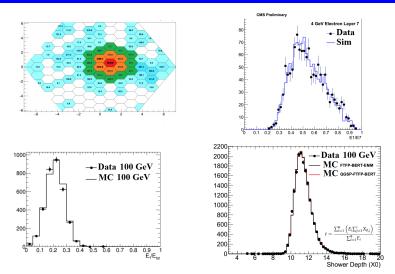
Electron beams: event display

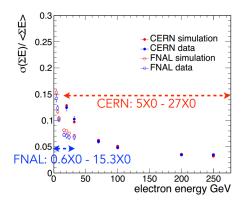

Studies


Studies

MIP calibration

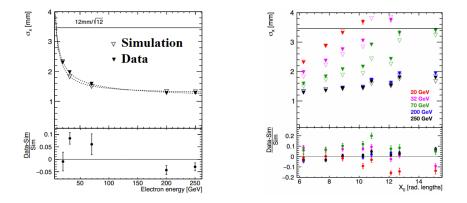
FNAL: p beam 120 GeV CERN: $\pi(\mu \text{ from } \pi)$ beam 125 (120) GeV Calibrate only central cells of sensor within trigger area


Variations due to the electronic and cell size



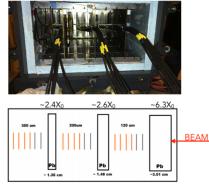
Measurements

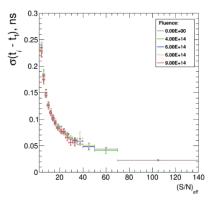
Transverse and longitudinal shower shapes


Excellent agreement between measurements and simulation \rightarrow one of the main goals achieved

- Energy measured in the silicon layers plus sampling factors for the absorbers
- Wide range of energies covered
- FNAL, CERN trends VS energy reflect different sampling regimes
- Limited longitudinal samplings limit the achievable electron energy resolution
- Good agreement between data and simulation

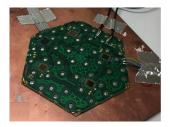
Measurements

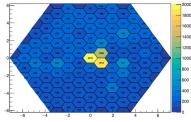

Position resolution


- Measure the difference between a track extrapolated from two wire chambers (upstream of first HGCal module) and the shower position (logarithmic weight E₁₉ cell)
- Precision of a few mm can be achieved It increases with energy and decreases with depth in calorimeter
- Good agreement with simulation

Measurements

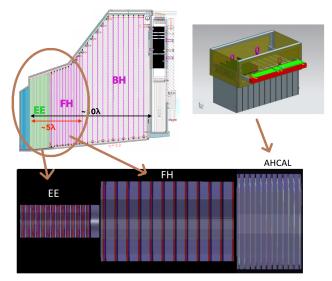
Time resolution


- . Use p-type and n-type 5x5 mm² diodes
- . Non-Irradiated and Irradiated
- . Use 1 Non-Irradiated and 1 Irradiated diodes (in turn) as references for time resolution measurement
- Can achieve 20ps timing resolution for reasonably-large signals
- No degradation in performance with radiation


HGCal beam test in 2017 (Goal 1)

- Updated front-end chip, 'Skiroc2-CMS', featuring HGCal ASIC:
 - 25 ns peaking time (\sim 200 ns in SKIROC2)
 - Time Over Threshold (ToT) for large signals
 - \bullet Time of Arrival information (\sim 50 ps timing) to explore timing performance
- Single layer PCB to achieve the desired compactness

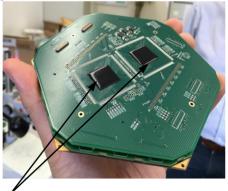
For more details, see talk by Johan Borg

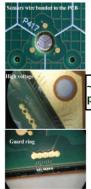

150 GeV e beam

New DAQ required First beam-test on a single module successfully completed in May **Outlook & Summary**

HGCal beam test in 2017 (Goal 2)

Aim to test full EE+FH+BH - like setup

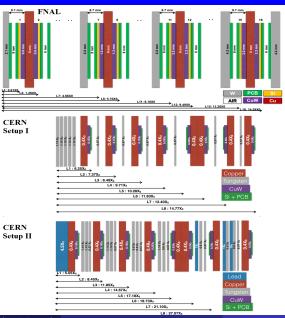



Summary

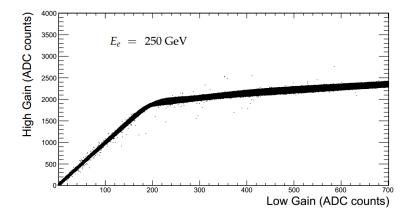
- HGCal is the CMS decision for replacing its current endcap in HL-Lumi era:
 - Good energy resolution for electromagnetic and hadronic particles in an extremely high-radiation environment
 - High granularity and fast timing to deal with high pileup
- Proof of concept through construction and first beam-tests of silicon-tungsten prototype modules
- Measured resolution for:
 - Energy: below \sim 7%, for *e* energy > 50 GeV
 - Position: below \sim 2mm, for *e* energy > 50 GeV
 - \bullet Time: \sim 20 ps
- Basic validation of the simulation
- In 2017 campaign, we aim to study full system performance (EE+FH+BH)

Fully assembled module

- Chosen for flexiblity so that the top board can be changed with a different readout chip design.
- Not the final design as the overall thickness is much larger than what is foreseen in the final design.



~ 700 wire bonds per module.


 SKIROC 2 ASIC(<u>64 channels per chip</u>, <u>2 chips per module</u>) developed by OMEGA group designed for the ILC. <u>Not the final front-end chip for HGCAL</u>.

Data taking setup

francesco.romeo@cern.ch (IHEP Beijing)

High gain - Low gain correlation

• High gain saturation around [1800;200] ADC in [HG;LG] plane • HG/LG ratio \sim 10

Exciting year ahead. Opportunities to join the effort.