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Introduction

● Conditions
– LHC luminosity: 2.5 x 1034 cm-2 s-1

– L1trigger rate ≤ 100 kHz
● Physics Motivations

– Physics sensitivity to electroweak 
process

→ low trigger thresholds (see TDR*)

➔ New L1 trigger system based 
on higher granularity

➔ jet Feature EXtractor (jFEX) required

* Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System: CERN-LHCC-2013-018

the current system
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* Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System: CERN-LHCC-2013-018

the Phase-I Upgrade
(Presented earlier today by Victor Andrei)
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● Conditions
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– L1trigger rate ≤ 100 kHz
● Physics Motivations

– Physics sensitivity to electroweak 
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→ low trigger thresholds (see TDR*)

➔ New L1 trigger system based 
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➔ jet Feature EXtractor (jFEX) required

* Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System: CERN-LHCC-2013-018

jFEX: topic of
this presentation

Increased 
granularity
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jFEX Requirements
● Receive data from central and forward calorimeters
● Identification in real-time of Jet and Large-area tau candidates

– capability for fat jets (up to 1.7 x 1.7 in η x φ)

– Baseline algorithm: Sliding window with Gaussian weighting
● Parallelized identification of local maxima

– Comparing energy sums of jet core regions (0.5 x 0.5) 
of all possible jet positions

● Calculation of jet energy sum by weighting adjacent trigger 
towers with Gaussian weights

● Calculation of Σ E
T
 and E

T
miss

– Fully exploit calorimeter information (best E
T
 resolution) at 

highest possible granularity (up to 0.1 x 0.1)
➔ Large overlap region necessary for every processor

➔ High factor of data duplication
● Latency budget: 387.5 ns (15.5 bunch crossings)
➔ High input bandwidth and large                                     

processing power required 8
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φ

Single Processor FGPA
coverage in η x φ:

Core area: 0.8 x 1.6
Overlap: 2.4 x 3.2
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1
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Features and Challenges
● Features:

– ATCA board
– 4 Processor FPGAs (Xilinx Ultrascale 

XCVU190FLGA2577)
● Each processor 120 Multi-Gigabit transceiver

– Data duplication via PMA loopback
● Each processor covers ¼ of φ range
● Each module covers full φ range of eta ring
● 7 modules to cover η range 

– 24 Avago MiniPOD: 5 RX + 1 TX per processor
● Each MiniPOD: 12 channels
➔ Incoming data per module: ~3.1 Tbps (@12.8 

Gbps per channel)

– Module control (mezzanine board)
● Carrier board for Avnet PicoZed (Xilinx Zynq)

– Power mezzanine boards
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Features and Challenges (2)
● Challenges:

– Tight routing space (breakout of 51x51 BGA)
● Conflicting constraints:

– Impedance of tightly-coupled differential signal pairs
– Voltage drop on power planes
– Drilling aspect ratio and via clearance
– Number of PCB layers
– Manufacturing costs

– Signal integrity
● Potential problems: attenuation, reflection, differential skew
● Matched impedance for differential signal pairs routed on several layers
● High density → possible cross-talk

– FPGA power consumption
● Uncertainty on required FPGA resources and toggling rate by the final algorithms
● Cooling
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jFEX Prototype

Stacked 
Micro Vias

Buried Via

Through-
Hole Via

4 Power
planes
105 µm 
and 70 µm
copper

24 layers MEGTRON6

Signal layers 
alternating 

with ground 
planes

● Prototype received December '16
● Few months delay

● One of two manufacturer gave up during 
production

● Assembled with one FPGA
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Data duplication using PMA Loopback
Measurement of bit error rate on Ultrascale evaluation board VCU110

Xilinx: Ultrascale Architecture GTH Transceiver User Guide
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf

BER < 2.15 x 10e-16

Data duplicated inside MGT Transceivers
● Receiver gets data from original data source
● Branch-off in digital domain
● Data available in FPGA fabric AND injected in 

transmitter

Measurement:
● Electrical transmission on coax cables via 

Bullseye and SMA connectors
● Xilinx IBERT running at 28 Gbps

Transmitter

Receiver
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PCB Simulations:
Signal Integrity Simulations

Channel transfer S21
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SFP+ recommendation mask

Post layout simulation of PCB traces for multi-gigabit links
● using Cadence Sigrity PowerSI
● PCB traces only simulated (without transmitter pre-emphasis and receiver equalization)
● Simulation results compared with SFP+ specifications (industrial standard with similar data rates)

● Only few traces exceed recommendation for max. channel return by < 2 dB between 4-6 GHz
● Specification recommends minimum attenuation for channel transfer to damp reflections

●  Prototype layout ~ 5 dB “too good”

0 dB

-3 dB

-14 dB

2 GHz 12 GHz 30 GHz 2 GHz 12 GHz 30 GHz

0 dB

-15 dB

-55 dB



22 - 26 May 2017 TECHNOLOGY AND INSTRUMENTATION
IN PARTICLE PHYSICS - TIPP 2017

12

jFEX Prototype: Link speed tests
11.2 Gbps

BER < 9.9 x 10e-16

12.8 Gbps
BER < 1.1 x 10e-15

Link NumberO
pe

n 
E

ye
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re
a

Tests at CERN with other modules
● LAr Trigger prOcessing MEzzanine 

(LATOME)
● 48 links @ 11.2 Gbps
● IBERT PRBS31
● Formatted data (8B10B encoded)

● FEX Test Module (FTM)
● 60 links @ 11.2 Gbps and 12.8 Gbps
● IBERT PRBS31
● Formatted data (8B10B encoded) 



22 - 26 May 2017 TECHNOLOGY AND INSTRUMENTATION
IN PARTICLE PHYSICS - TIPP 2017

13

FPGA power consumption

● Xilinx Power Estimator used for initial estimates of power requirement

● Validated with measurements on Xilinx evaluation board XCU110

– Measurement of FPGA power 
consumption depending on 
usage of FPGA resources 
(DSP)

– Estimation of DSP usage for 
final algorithm version ~ 43 %

– Expected max. current for 
VCCINT is ~ 35 A

Max. 100% DSP (1800), 
58% LUTs
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PCB Simulations:
Power / Thermal Simulations

● PCB simulated for VCCINT current up to 60 A per processor
● Design challenge: ± 3% (=30 mV)  VCCINT tolerance

● solved with increased plane size and copper thickness

Voltage drop
● Max voltage drop 12 mV less than half 

of Xilinx specs
● Effective voltage drop further reduced 

by power supply sense lines

Temperature
● PCB stack-up has high thermal 

conductivity → no thermal hot spots
● Worst case: 6.4 °C temperature rise 

due to power loss on power planes
→ safe operational condition
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Power and Temperature Measurements

11.2 Gbps
48 links

11.2 Gbps
60 links

12.8 Gbps
60 links

MGTAVCC (1.0V) 9.4 11.8 12.4

MGTAVTT  (1.2V) 4.2 4.2 4.2

VCCINT (0.95 V) 8.2 10 11.4

12 V 5.8 6.6 6.9

FPGA Core 
Temperature 57 62 65

● Ripple on Supply Voltages
– Critical ripple requirement for MGTAVCC and MGTAVTT: 

Ripple < 10 mVpp
● Power Supply:

– Artesyn SIL20C
● Successfully tested
● Measured max. ripple: MGTAVTT 2.0 mV, MGTAVCC 1.7 mV, 

VCCINT 2.3 mV

– Next Step: TDK-Lambda iJX-Series
● PMbus functionality
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Conclusions and Perspectives
● Challenging luminosity conditions after Long Shutdown 2 (LS2)
● Upgrade of Level-1 Calorimeter trigger system required
● jFEX is one of the three new feature extractors

– Working on higher data granularity than before
● 4 Processor FGPAs (Xilinx Ultrascale) per jFEX board (ATCA form factor)

– Board input bandwidth: ~3.1 Tbps
● PCB layout was accompanied and checked by power, thermal and signal 

integrity simulation
– Post-layout simulations suggest data transmission possible up to very high line 

rates
● First prototype produced with one processor assembled

– Link speed tests with other modules as data source
– Tests very successful so far

● Final production by July 2018
– Installation and commissioning in ATLAS up to LHC restart in 2021 
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