

Results from Pilot Run for MEG II Positron Timing Counter

Mitsutaka Nakao (The University of Tokyo)

A. De Bari, M. Biasotti, G. Boca, P. W. Cattaneo, M. Francesconi,M. De Gerone, L. Galli, F. Gatti, A. Mtchedilishvili, D. Nicolo, M. Nishimura,W. Ootani, S. Ritt, M. Rossella, M. Simonetta, Y. Uchiyama, M. Usami

Charged Lepton Flavour Violation

- Inter-generational mixing have not been observed only for charged lepton sector.
- Too small branching ratio is predicted in the framework of the standard model + neutrino mass.

• Beyond the standard model (SUSY GUT etc) predicts that charged lepton should also mix at experimentally observable rate: $O(10^{-11}) \sim O(10^{-15})$

The discovery of cLFV is clear evidence for new physics

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO **★** Page: **2**/17

MEG II Experiment

At Paul Scherrer Institut in Switzerland

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 3/17

MEG II Detector

At Paul Scherrer Institut in Switzerland

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO **★** Page: **4**/17

Positron Timing Counter (1): Concept

Key Concept

Improve time resolution by averaging the signal time of multiple hits.

$$\sigma_{\text{all}}(N_{\text{hit}}) = \sqrt{\frac{\sigma_{\text{intrinsic}}^2}{N_{\text{hit}}} + \frac{\sigma_{\text{inter-pixel}}^2}{N_{\text{hit}}} + \sigma_{\text{MS}}^2(N_{\text{hit}}) + \sigma_{\text{const}}^2}}{N_{\text{hit}}}$$
Intrinsic resolution:
 $70 \sim 80 \text{ ps}$

$$\sim 4 \text{ ps at 9 hits}$$

5/17

MITSUTAKA NAKAO **★** Page:

Positron Timing Counter (2): Pixel

- Upstream (256 pixels) + Downstream (256 pixels) = 512 pixels
- Fast plastic scintillator (BC422, 40 (50) x 120 x 5 mm³)
- Readout by 6 SiPMs* with series connection (in total 6144 SiPMs) at each of both sides.
- Time calibration accuracy among pixels: < 30 ps

*AdvanSiD, ASD-NUV3S-P High-Gain, 3x3 mm², 50x50 µm², V_{breackdown} ~ 24 V

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO **★** Page: **6**/17

To construct MEG II timing counter (pTC) and evaluate its performance under the MEG II environment towards coming physics run.

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO **★** Page: **7**/17

Positron Timing Reconstruction

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO **★** Page: **8**/17

Time Calibration: Laser-based

PLP-10 (Hamamatsu) is used as a light source.

- Time offset of each pixel is measured relative to laser-synchronized pulse.
- Calibration uncertainty is estimated as 24 ps by testing all parts of laser calibration system.

MITSUTAKA NAKAO **★** Page: **9**/17

Time Calibration: Track-based

- Positron tracks from Michel decay ($\mu^+ \rightarrow e^+ \nu \nu$) are used for calibration.
 - 1. Assume every pixel has 3 different TOF b/w pixels (pattern A, B and C).
 - 2. Calculate these TOF values for every pixel by Monte Carlo*.
 - 3. Define χ^2 as the difference b/w measured time and expected time.
 - 4. Minimize χ^2 using Millepede II.
 - 5. Find ΔT_{j} .
- Calibration uncertainty is estimated as 11 ps by MC study.

$$\chi^{2} = \sum_{i}^{N_{ev}} \sum_{j}^{N_{hit}} \frac{\text{Expected time}}{\left(\left(T_{ij} - \left(T_{0i} + TOF_{ij} + \Delta T_{j}\right) / \sigma\right)\right)^{2}\right)}$$
Time offset of each pixel
:What we want to know

* This setup is for Pilot Run w/o DCH. TOF will be calculated by DCH in physics run.

Millepede II www.desy.de/~kleinwrt/MP2 A software provided by DESY to solve the linear squares problems, such as detector alignment and calibration based on track fits.

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 10/17

Pilot Run 2016

- 128 pixel (=1/4 of pTC) was installed.
- Laser calibration was partially installed (40 pixels).
- Beam time for 3 weeks.
- µ⁺ beam with the same intensity as MEG II.

(Stopping Rate: 7.0x10⁷ Hz)

DAQ & Trigger

Integrated trigger and DAQ system is designed for MEG II.

Trigger

- Several trigger schemes were implemented in Pilot Run 2016.
 - Track-like
 - Multiplicity
 - > OR
 - > Laser
 - Pedestal

DAQ: WaveDREAM2

- Multi-functional board developed at PSI.
 - > SiPM biasing (~ 240 V)
 - > Amplifier (no pre amplifier)
 - Pole-zero cancellation
 - Waveform digitization at gigasampling (DRS*4 chip)
 - First level trigger
 - *DRS = Domino Ring Sampler

WaveDAQ crate (= 16 WaveDREAM2 boards = 256 channels)

Trigger Concentrator Board

WaveDREAM2 board = 16 channels

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO * Page: 12/17

Results Consistency b/w Time Calibration Methods

 Time-offset difference b/w laser-based method and track-based method (left) and its stability (right).

• The variation of time-offset difference is $\sigma = 39$ ps.

- Including systematic uncertainty of laser-based and track-based methods.
- Time-offset difference is stable in time (~ 6 ps).

Time Resolution (1): Odd-Even Analysis

- Multi-counter resolutions are evaluated by the odd-even analysis.
- For a given consecutive pixels (right fig.), pixels are divided into 2 groups according to the order of positron tracks: "odd" and "even".
- Time difference (T_{nhits}) is defined as (average of "odd" pixels – average of "even" pixels)/2
- Calculated for $N_{hit} = 2, 4, 6, 8, 10$.

Time Resolution (2): Results

- The points are the weighted average of 22 pixel combinations.
- The red curve is the best fit function:

$$\sigma_{\rm total}(N_{\rm hit}) = \sqrt{\frac{\sigma_{\rm single}^2}{N_{\rm hit}} + \sigma_{\rm const}^2}$$

- $\sigma_{total}(9) = 31 \text{ ps was achieved.}$
- Overall resolution weighted with the probability of the number of hit pixels was 38 ps.

$$\sigma_{\rm all} = \sqrt{\sum_{N_{\rm hit}} p_{N_{\rm hit}} \sigma_{\rm total}^2(N_{\rm hit})}$$

A factor of 2 improvement compared to TC at MEG.

pTC for MEG II was successfully constructed.

MITSUTAKA NAKAO ★ Page: 15/17

MEG II Status & Prospects

Now		Preparation for Pilot Run 2017
Oct.	2017	 Pilot Run 2017 Positron Timing Counter, Liquid Xenon Gamma-ray Detector, Radiative Decay Counter will be installed. ~7 weeks of combined detector DAQ is planned under the MEG II environment.
		 Installation of all detectors Including Drift Chamber.
Jul.	2018	 Engineering Run 6 months of performance data-taking. This run may evolve into physics run if things get ready.
		 Physics Run > Start searching for μ⁺→e⁺γ with unprecedented sensitivity.

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ***** Page: **16**/17

Summary

Background	 The MEG II experiment will search for cLFV (μ⁺→e⁺γ) with a sensitivity of 4 x 10⁻¹⁴ pTC can achieve improved time resolution (~ 35 ps) by averaging the signal time of multiple hits (~ 9).
Purpose	 To construct pTC and evaluate its performance under the MEG II environment.
Method	 2 complementary time calibration methods have been developed. Full pTC was constructed and ¼ were installed. → Pilot Run 2016 was performed.
Results	 2 time calibration methods were consistent and stable. For Michel positrons, time resolution was improved by a factor of 2 (38 ps) compared to MEG.

• pTC for MEG II was successfully constructed.

• Engineering run is planned in 2018, and physics run follows.

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 17/17

Backup Slides

Comparison

MEG I TC (310ct2006) 10 years! MEG II TC (21Nov2016)

Reality!!

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 19/17

MEG and Beyond the Standard Model

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ***** Page: **20**/17

MEG II Expected Performance

Table 8 Resolutions (Gaussian σ) and efficiencies of MEG II compared with those of MEG

PDF parameters	MEG	MEG II
$\overline{E_{e^+}}$ (keV)	380	130
θ_{e^+} (mrad)	9.4	5.3
ϕ_{e^+} (mrad)	8.7	3.7
z_{e^+}/y_{e^+} (mm) core	2.4/1.2	1.6/0.7
$E_{\gamma}(\%) \ (w > 2 \ \text{cm})/(w < 2 \ \text{cm}))$	2.4/1.7	1.1/1.0
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$	5/5/6	2.6/2.2/5
$t_{e^+\gamma}$ (ps)	122	84
Efficiency (%)		
Trigger	≈ 99	≈ 99
Photon	63	69
e ⁺	30	70

Positron Timing Counter (2): Pixel

- Upstream (256 pixels) + Downstream (256 pixels) = 512 pixels
- Fast plastic scintillator (BC422, 40 (50) x 120 x 5 mm³)
- Readout by 6 SiPMs (AdvanSiD, ASD-NUV3S-P High-Gain) with series connection (in total 6144 SiPMs) at each of both sides.
- Time calibration accuracy among pixels: < 30 ps

Amplifier

- For higher flexibility and applicability, simple readout system is important
- High-bandwidth low-noise
 voltage amplifier (2-cascade)
 with 50Ω input impedance
 □ Allows long signal-transmission.
 □ However, forms slow RC time constant
 - with SiPM high capacitance, especially with larger area.

Two counter-measures

 Pole-zero cancellation circuit to pickup leading-edge part signal and to quickly restore stable baseline

✓Against high dark count

February 15, 2016 YUSUKE UCHIYAMA

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ***** Page: **23**/17

Slide from Y. Uchiyama in VCI2016

Series connection of SiPMs

- This forms a slow RC time-constant with amplifier input impedance
 - $3 \times 3 \text{ mm}^2$: $300\text{pF} \times 50\Omega = 15 \text{ ns}$
 - $3 \times 9 \text{ mm}^2$: $900\text{pF} \times 50\Omega = 45 \text{ ns}$!!
 - → One of limitations for large area SiPMs or array of SiPMs with parallel connection
- This large capacitance works as capacitive coupling when connected in series

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ***** Page: **24**/17

Parameter	Value	Unit
Effective active area	3×3	mm^2
Cell size	50×50	$\mu { m m}^2$
Cells number	3600	
Spectral response range	350 to 900	nm
Peak sensitivity wavelength	420	nm
Breakdown voltage $V_{\rm BD}$	24 ± 0.3	V
Work voltage range	$V_{\rm BD} + 2$ to $V_{\rm BD} + 3.5$	V
Dark count	< 100	kcps/mm ²
Gain	3.3×10^{6}	
$V_{\rm BD}$ temperature sensitivity	26	mV/°C

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 25/17

Slide from Y. Uchiyama in VCI2016

SiPM Comparison: Pulse shape (3-series)

- Pulse shape depends on R_q & C_q
 C_q is important for the fast signal
 Slow tail by larger R_q can be omitted with pole-zero cancellation
- SensL's fast output terminal can be used to make very fast rise time

A method to combine the fast output into the normal signal line (by N. Pavlov)

February 15, 2016 YUSUKE UCHIYAMA

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO **★** Page: **26**/17

Slide from Y. Uchiyama in VCI2016

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ***** Page: **27**/17

Size dependence

Length = 120 mm

■ Width = 50 mm

February 15, 2016

Final choice is given by optimization between Single counter resolution (small size) and Hit multiplicity & efficiency (larger size) Performance of SiPMs and Number of SiPMs (cost)

Slide from Y. Uchiyama in VCI2016 –

MITSUTAKA NAKAO ***** Page: **28**/17

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 29/17

Bias Voltage

I-V curve of single SiPM I-V curve 10^{2} Current [µA] ----- ch1 10 Adjust the same current 10^{-1} Break down voltage 10^{-2} Over The same over voltage 10-3 voltage 72 70 71 73 74 69 Voltage [V]

Shape of I-V curve is almost same for every SiPM.

Only break down changed for each SiPM.

 \Rightarrow If the current is the same for SiPMs, their over-voltages are adjusted to be same automatically.

Slide from Y. Uchiyama in VCI2016

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 30/17

PDE Comparison

Fig. 10. Results of relative PDE measurements in the NUV region using a UV-LED.

arXiv:1402.1404

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 31/17

Increasing the number of SiPMs

PoS(PhotoDet 2015)011, Moscow, Russia, (2016)

MITSUTAKA NAKAO ★ Page: 32/17

Construction

 SiPMs, SiPM-Arrays, scintillators are tested at each step.

32 µm-thick ESR2

25 µm-thick Tedlar®

TIPP2017 (22nd-26th May 2017, Beijing) MITS

MITSUTAKA NAKAO **★** Page: **33**/17

Time Calibration: Laser-based

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 35/17

Laser Calibration Setup in Pilot Run 2016

- Laser system was successfully installed into 40 counters out of 128 counters.
- Signal is divided by means of optical splitters.
- Relative time-offset = difference from first counter

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ***** Page: **36**/17

Resolution incl. time calibration

- Even odd analysis is insensitive to time offset when testing a given combination
- Select 22 10-counter combinations
 Different combinations have different center for *T*(even odd) if time offset is not calibrated.
 - □ Accumulate *T*(even odd) for all the combinations

YUSUKE UCHIYAMA

- No degradation
- Validation of a good time calibration
- Achieved σ(N=8) = 34 ps including time calibration contribution

TIPP2017 (22nd-26th May 2017, Beijing)MITSUTAKA

MITSUTAKA NAKAO ***** Page: **37**/17

Time Calibration w/ Other Detrctors

TIPP2017 (22nd-26th May 2017, Beijing)

MITSUTAKA NAKAO ★ Page: 38/17