4th International Conference on Technology and Instrumentation in Particle Physics (TIPP 2017)

May 21–26, 2017, Beijing, China

Assembly of a Silica Aerogel Radiator Module for the Belle II ARICH System

Makoto Tabata (Chiba Univ.)

makoto@hepburn.s.chiba-u.ac.jp

On behalf of the Belle II ARICH Group

Outline

o Introduction

- ARICH PID system in the Belle II detector
- Requirements for silica aerogel radiator

Mass Production of Silica Aerogel Tiles

- Crack-free yield
- Optical characterization

Assembly of an Aerogel Radiator Module

- Water jet machining
- Aerogel installation

ARICH Counter in the Belle II Detector

- Super-B factory experiment, Belle II at KEK, Japan
 - Detector upgrade in progress [Physics run from 2018]
- Forward endcap PID subsystem, ARICH
 - Aerogel-based proximity focusing Ring Imaging CHerenkov counter [ARICH]

Threshold-type aerogel Cherenkov counter [ACC] in the Belle

- Design objective
 - π/K separation
 capability exceeding
 4σ at 4 GeV/c

Presentation refs. /

T. Konno et al. [ARICH general, oral];

K. Ogawa et al. [HAPD, poster];

M. Yonenaga et al. [Slow control, poster].

Requirements for Aerogel Radiator

Double-layer focusing radiator scheme

- 20-cm expansion distance
- High Cherenkov angle resolution and high photon yield
- $_{\circ}$ n_{upstream} = 1.045 [2 cm thick] & $n_{\text{downstream}}$ = 1.055 [2 cm thick]
- $_{\circ}$ Transmission length $\Lambda_{T} \sim 40 \text{ mm}$ at 400-nm wavelength

Large radiator coverage: 3.3 m² [cylindrical]

- Minimum tile boundaries
- 124-segments tiling scheme [248 tiles]
- Fan-shaped tiles trimmed from crack-free 18 x 18 cm² tiles

Hydrophobic characteristics

- Water jet machining [waterproof]
- Long-term stability

Journal ref. / M. Tabata et al., Nucl. Instrum. Methods A 766 (2014) 212.

Aerogel Tiling Scheme

Aerogel support structure

- o 2.2 m dia. cylindrical module
- o 3.3 m² [130 L]
- 4 concentric rings
 4 types of aerogel shapes
- o 124 aluminum cells
- 248 fan-shaped aerogel tiles

Silica Aerogel

Colloidal foam of nanoscale SiO₂ particles

- Transparent
- Tunable refractive index [i.e., bulk density]
 n = 1.003–1.26 Journal ref. / M. Tabata et al., Nucl. Instrum.
 Methods A 623 (2010) 339.
 - Density determined by silica—air volume ratio

Basic production procedure

- o Journal ref. / M. Tabata et al., Nucl. Instrum. Methods A 668 (2012) 64.
- Wet gel synthesis by the sol-gel method
- 2. Solvent exchange & Surface modification
- 3. Supercritical CO₂ drying

Mass Production of Silica Aerogel Tiles

Mass Production of Aerogel Tiles

- $_{\circ}$ Prior to mass production, large-area [18 \times 18 \times 2 cm³] tiles were successfully developed in good crack-free yield [~80%].
 - Collaboration among KEK, Chiba Univ., Japan Fine Ceramics Center [JFCC], and Panasonic Corporation

Panasonic

- Technology transfer from Chiba U. and Panasonic to JFCC
- o Journal ref. / M. Tabata et al., J. Supercrit. Fluids 110 (2016) 183.
- Aerogel mass production was begun in Sep. 2013 and completed in May 2014 at JFCC.
 - o 16 lots / 448 tiles
 - Delivered to KEK for quality check as soon as production lots became available

Yield of Tiles without Damages

- The tile yield was 77%, obtaining 344 usable tiles.
 - 448 tiles manufactured
 - 248 mandatory and 96 [39%] spare tiles obtained

Tile damage classification

- Physical [mechanical] damages:
 Tile cracking, chipping, etc.
- Chemical [optical] damages:
 Milky tile due to a sol–gel error

Usable 344 tiles 77%

Refractive Index

 The deviations from the target refractive indices were within our expectation.

on [target] = 1.045 ± 0.002 [up] & 1.055 ± 0.002 [down]

Transmission Length

The transparency was enough to meet our requirements.

 $_{\circ}$ Λ_{T} [target] > 40 mm [up] & 30 mm [down] at 400-nm wavelength

Assembly of an Aerogel Radiator Module

Water Jet Machining

Square tiles were cut into fan shapes using a water-jet

cutting device at a company. CAD drawing Fan-shaped container Trimmed part to be Delivered tile after used machining 17 cm 18 cm

Hydrophobic

Yield of Tiles without Volume Loss

- The success rate of water jet machining was 90% without volume loss, yielding 248+ tiles.
 - 283 tiles water-jet machined
- Classification
 - Grade S / No volume loss
 - Grade A / Acceptable volume loss
 [≤ 1 cm², 0.4%]
 - o Grade B / Unusable

Grade B 28 tiles 10%

Grade A 94 tiles 33% Grade S 161 tiles 57%

Combination of 2-layer Tiles

 Pairs of upstream and downstream tiles were determined to build a good-focusing-radiator framework.

Aerogel Installation Procedure

Aerogel Installation Procedure (cont'd)

Aerogel Installation Completed

 Aerogel installation for 124 cells was completed in Dec. 2016.

Summary

- Large-area, hydrophobic silica aerogel tiles for use as Cherenkov radiators in the ARICH system were developed.
 - o The ARICH system will be used for identifying π and K mesons at the forward endcap of the Belle II spectrometer.
- Mass production of highly transparent aerogel tiles with high refractive index was successful.
 - The optical performance of mass-produced aerogel tiles was validated.
- Assembly of the aerogel radiator module was completed.
 - The aerogel module with the photo-detector module will be installed in the Belle II spectrometer in around Sep. 2017.