Electronics, trigger and data acquisition systems for the INO ICAL experiment

Satyanarayana Bheesette For and on behalf of the INO/ICAL Electronics team

S.Achrekar¹, S.Aniruddhan³, N.Ayyagiri¹, A.Behere¹, N.Chandrachoodan³, V.B.Chandratre¹, Chitra³, D.Das¹, S.Dasgupta⁵, V.M.Datar⁵, U. Gokhale⁵, A.Jain¹, S.R.Joshi⁵, S.D.Kalmani⁵, N.Kamble¹, S.Karmakar⁶, T.Kasbekar¹, P.Kaur⁵, H.Kolla¹, N.Krishnapura³, P.Kumar³, T.K.Kundu⁶, A.Lokapure⁵, M.Maity⁶, G.Majumder⁵, A.Manna¹, S.Mohanan¹, S.Moitra¹, N.K.Mondal⁴, P.M.Nair¹, Abinaya.P³, S.Padmini¹, N.Panyam⁵, Pathaleswar⁵, A.Prabhakar³, M.Punna¹, M.Rahaman⁶, S.M.Raut¹, K.C.Ravindran⁵, S.Roy⁶, Prafulla.S¹, M.N.Saraf⁵, B.Satyanarayana⁵, R.R.Shinde⁵, S.Sikder¹, D.Sil⁵, M.Sukhwani¹, M.Thomas², S.S.Upadhya⁵, P.Verma⁵, E.Yuvaraj⁵

¹Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, INDIA
 ²Electronics Corporation of India Limited, Veer Savarkar Marg, Mumbai, 400028, INDIA
 ³Indian Institute of Technology Madras, IIT P.O., Chennai, 600036, INDIA
 ⁴Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, 700064, INDIA
 ⁵Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005, INDIA
 ⁶Visva-Bharati, Santiniketan, 731235, INDIA

ICAL, e-ICAL and m-ICAL

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

ICAL, e-ICAL and m-ICAL

Parameter	ICAL	e-ICAL	m-ICAL
No. of modules	3	1	1
Module dimensions	16.2m×16m×14.5m	<mark>8m×8mx2m</mark> (90:1)	4m×4mx1m (720:1)
Detector dimensions	49m×16m×14.5m	8m×8mx2m	4m×4mx1m
No. of layers	150	20	10
Iron plate thickness	56mm	56mm	56mm
Gap for RPC trays	40mm	40mm	45mm
Magnetic field	1.3Tesla	1.3Tesla	1.3Tesla
RPC dimensions	1,950mm×1,910mm×24mm	1,950mm×1,910mm×24mm	1,950mm×1,910mm×24mm
Readout strip pitch	30mm	30mm	30mm
No. of RPCs/Road/Layer	8	4	2
No. of Roads/Layer/Module	8	4	1
No. of RPC units/Layer	192	16	2
No. of RPC units	28,800 (107,266m ²)	<mark>320 (1,192m²)</mark> (90:1)	20 (74.5m²) (1440:1)
No. of readout strips	3,686,400	40,960 (90:1)	2,560 (1440:1)

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Functions of ICAL electronics

- Signal pickup and analog front-end
- Strip hit latch
- Pulse shapers, timing units
- Background noise rate monitor
- Digital front-end and calibration
- Data network architecture
- Multilevel trigger system
- Backend data concentrators
- Event building, data storage systems
- On-line data quality monitors
- Slow control and monitoring
 - Gas system, magnet, power supplies
 - Ambient parameters
 - Safety and interlocks
- Remote access to detector and data

Page 3 page thick floor Glas

separated by 2 mm spacer

Particles produced in the neutrino interactions pass through alternating layers of iron plates and RPCs, leaving tracks in the latter. Tracks bend as per the charge of the produced particles, due to the ICAL's magnetic field.

TIPP2017, Beijing, China

I were thick some

Pickup of

Sub-systems of ICAL electronics

- Analog Front-ends
- TDC ASIC
- Digital Front-Ends
- Trigger System
- Global services, calibration and synchronisation units
- Data network and backend hardware
- Backend DAQ software
- Low voltage system
- High Voltage module
- Electronics integration

May 22-26, 2017

TIPP2017, Beijing, China

Analog Front-End boards with Anusparsh ASICs

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Analog Front-End boards with NINO ASICs

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

ICAL's TDC ASIC

Principle

- Two fine TDCs to measure start/stop distance to clock edge (T1, T2)
- Coarse TDC to count the number of clocks between start and stop (T3)
- TDC output = T3+T1-T2

Features and specifications

- UMC 130nm technology, QFN64 package, 3.2mm×3.2mm in size
- Input clock: 10MHz (250MHz to DLL internally generated by PLL)
- 16 hit channels, 1 trigger and 1 calibration channel
- Four paired time stamps: leading edge 65.5µs (125ps), pulse width 64ns (250ps)
- Readout buffers: 91 locations
- 32-bit/hit, data on 4-and 11-line SPI bus.
- Self test features

TIPP2017, Beijing, China

May 22-26, 2017

Satyanarayana Bheesette, TIFR, Mumbai

DFE module – the workhorse

- Unshaped, digitized, LVDS RPC signals from 128 strips (64x + 64y)
- 16 analog RPC signals, each signal is a summed or multiplexed output of 8 RPC amplified signals.
- Global trigger
- TDC calibration signals
- TCP/IP connection to backend for command and data transfer.

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Soft-core processor

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

DFE module

Altera Cyclone 4 HPTDC Wiznet 5300

The second se

Three boards

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

DFE with optical data interface

Xilinx Kintex-7 FPGA (XC7K160T-2FFG676I) and Aurora 64B66B IP core SFP module (AFBR-709SMZ), 10Gb Ethernet, 850 nm, 10GBASE-SR/SW

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

۲

11111111

Satyanarayana Bheesette, TIFR, Mumbai

PUTTOPPE

TIPP2017, Beijing, China

Calibration module

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Performance of calibration module

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

ICAL trigger scheme

- Insitu trigger generation. Autonomous; shares data bus with readout system
- For ICAL, trigger system is based only on topology of the event; no other measurement data is used
- Huge bank of combinatorial circuits; Programmability is the game, FPGAs, ASICs are the players

Trigger criteria

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Trigger system for e-ICAL

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Trigger system with m-ICAL

THUMAN

inne

Tomas Tomas

inner

inner

tum

innin.

num num

Signal Router Board (SRB) Trigger Logic Board (TLB) Global Trigger Logic Board (GTLB) Control and Monitoring Board (CAM)

19999

mm

Din.

Overview of ICAL data LAN

Back-end data concentrator hardware

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Back-end DAQ software

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

System integration

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

LV Power Supply and distribution

LVPS: Low Voltage Power Supply	RPC: Resistive Plate Chamber	Cables:- Each Cable will deliver power to four RPCs.	
LVD: Low Voltage Distributor	AFE: Analog Front-End Cable Specification:- DFE: 2 wires, +V and ground		
DP: Distribution Panel	DFE: Digital Front-End	AFE: 12 wires; +V, -V and ground. HV: 2 wires; +V and ground.	
	HV: High Voltage		

Design scheme is complete. Prototyping is in progress.

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

High voltage power supply

- Output voltage adjustable in the range ± 0-6KV (to generate 0-12KV) with output current up to 2µA.
- HV load regulation: better than 0.1% F.S
- Output ripple/noise voltage: within 200 mV
 (p-p).
- Adjustable HV Ramp rate 10-1000 Volts/ sec, HV on/off control, HV output read back facility.
- HV load current read back facility with a resolution of 5 nA.
- Required LV Input supply: 12V @200mA
 Ambient fringe magnetic field: 500 gauss

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Integration of electronics in RPC

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

ICAL Prototype detectors

Operating 24×7 for many years

Some results from prototypes

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China

Status and future outlook

- Design of baseline ICAL detector electronics completed, reviewed.
- Prototypes and limited quantities of various components and modules were produced, technologies and vendors identified.
- They are all tested, and are being used to read many ICAL prototype detectors, including the m-ICAL which is currently under construction.
- The project (ICAL) and the e-ICAL are delayed, hence large scale production of its electronics is put on hold.
- Meanwhile, revisions and upgrades or even new architectures, of various components are being worked out.

Satyanarayana Bheesette, TIFR, Mumbai

TIPP2017, Beijing, China