

A Novel Gamma-ray Detector for Gravitational Wave Electromagnetic Counterpart All-sky Monitor (GECAM)

Pin Lv, Xilei Sun, Shaolin Xiong

IHEP, China

5/24/2017

1

- > Research status of Gravitational Wave Electromagnetic Counterpart
 - Existing telescopes;
 - About GECAM.
- > A novel Gamma-ray Detector: the crystal of LaBr₃ with SiPM
- Performance of the detector
 - Dynamic range;
 - Linear response;
 - Energy resolution;
 - Uniformity;
 - Detection efficiency.

> Summary

Present research status

G

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

G

[1][2]

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 15 February 2016; published 31 March 2016)

> A lot of high energy telescopes began to search the counterparts

> The counterpart is the electromagnetic radiation of gravitational wave source

- Help confirm the gravitational wave events;
- Help locate the gravitational wave sources;
- Help research dark matter and dark energy.
- > The key technology of searching high-energy counterparts
 - Wide field of view: gravitational wave bursts are random all day;
 - High sensitivity: range from radio wave to high-energy gamma-Rays;
 - Excellent localization: help confirm low-energy counterparts.

Existing astronomy telescopes

Project	Field of view (All-sky)	Location (deg)	Energy (keV)	Status
Fermi/GBM	60%	5	10 - 40000	Running
Swift/BAT	10%	0.1	15-350	Running
Konus-Wind	80%	No	20-15000	Running
POLAR	30%	5	50-500	Running
HXMT	60%	10	200-3000	Running
SVOM/GRM	40%	5	15-5000	~2021
GECAM	100%	1	6-5000	~2020
EP	10%	0.1	0.5-4	~2021

 Tab.1. The existing and planning astronomy telescope

Gravitational Wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is specially designed for the gravitational wave high-energy counterparts.

Einstein Probe (EP) is specially designed for the gravitational wave low-energy counterparts.

They will collaborate with each other for counterparts in the future.

About GECAM

Objectives of GECAM

- Seek out the high-energy counterparts;
- Monitor Gravitational Wave and supply the key information;
- Research the physical mechanism of black-hole and gamma burst;

Performance requirements

- Large dynamic range: 6 keV 5 MeV;
- High sensitivity: ~2E-8 erg/cm²/s;
- Wide field of view: 4π All-sky ;
- Excellent localization: ~1 deg;

Project requirements

- Two kinds of detectors: GRD and CPD;
- The space is limited, so the detector should be small;
- The detector should be compact and stable.

The LaBr₃ crystal with SiPM as read device may be the best candidate for GRD.

GRD : Gamme-Rays Detector CPD : Charged-Particle Detector

Fig.1. Micro-satellite for GECAM

The Gamma-Rays detector

> The LaBr₃ crystal (one of the best crystals which can be mass production)

- Density: 5.3g/cm³;
- Fast decay time: <35ns;
- High photo yield and good linear response: 60000 photons/MeV;
- High energy resolution: 3%(FWHM)@662keV for small volume.[3-7]

> SiPM

- Single-photon sensitively, low bias;
- Small volume, excellent uniformity;
- large dynamic range, high photon detection efficiency;
- Large area SiPMs are available[8].
- ➤ The LaBr₃ crystal with SiPM as read device
 - Saint-Gobain_3 inch LaBr₃ + SensL_ArrayJ_60035_64P (50.44*50.44mm²);
 - Compare to PMT[9], SiPMs are more suitable.

The Gamma-Rays Detector

> Preamp

- Low-noise: cascade two amplifiers (ADA-4895-1)
- high-gain: ~25 times
- Low-power: <0.1W/Channel

- 64 pads of SiPM in parallel;
- SiPM and circuit are attached to both sides of the same PCB;
 - Use Compton membrane and silicone oil to improve the light collection;

Fig.4. the gamma-rays detector

Performance of GRD — Dynamic range

Internal radioactive of LaBr₃: ¹³⁸La@5.6keV and 37.4keV (X-Rays) Radioactive source: ⁵⁵Fe@5.9keV (X-Ray)

The lower limit can reach **5.6keV**, and this result satisfies the GECAM requirement.

Performance of GRD — Linear response

Fig.11. the energy spectrum of ⁶⁰Co

Performance of GRD — Linear response

Source	Energy	Rays
La decay	5.6keV, 37.4keV	X-Ray
⁵⁵ Fe	5.9keV	X-Ray
²⁴¹ Am	59.5keV	X-Ray
⁵⁷ Co	122keV, 136keV	γ-Ray
¹³³ Ba	81keV, 356keV	γ-Ray
¹³⁷ Cs	662keV	γ-Ray
⁶⁰ Co	1173keV, 1332keV	γ-Ray

Tab.2. the radioactive sources and rays

Fig.12. the relation of ADC and energy

10 Fig.13. the waveform of high-energy γ -Ray

Linear response changes for high-energy;

- > The amplitude is over-channel;
- Change Flash ADC and do correction.

Fig.14. the energy spectrum of ²⁴¹Am

16.1% (FWHM) @ 59.5keV(²⁴¹Am);

6.5% (FWHM) @ 662keV (¹³⁷Cs);

3.2% (FWHM) @ 1332keV (⁶⁰Co).

Fig.17. the energy resolution curve

The energy resolution satisfies the GECAM requirement (<10% @ 662keV). 11

The ²⁴¹Am source is placed on the crystal after being collimated.

Fig.19. the uniformity of line1 and line2

- **Regard the result of point**(1) as reference value;
- The uniformity get worse with the position moves to edge;
- The reflection of edge may cause the loss of light;
- The difference between center and edge is less than 10%;
- This value is acceptable, and we can do correction afterwards.

For ⁵⁵Fe source:

Source	Energy	T _{1/2} (year)	Date in A_0 is measured (year)	Activity
⁵⁵ Fe	5.9keV	2.7	1986	2.59E+07

Tab.3. the information of ⁵⁵Fe source

The present activity A can be calculated by $A = A_0 e^{-\lambda t}$ T: time, λ : decay constant; A_0 : the activity when t=0.

- For 2π spatial angle, Detection efficiency: 42%--65%;
- This value will be influenced by beryllium window...

Summary

- GECAM as high energy astronomy telescope which is specially designed for searching gravitational wave high-energy counterparts is a necessary and important work.
- > The performances of GRD (the LaBr3 crystal with SiPM) are good.
 - The dynamic range can be as low as **5.6keV**;
 - The energy resolution can reach 6.5%(FWHM)@662keV, 3.2%@1332keV;
 - The uniformity and linear of the crystal are acceptable;
 - The detection efficiency of the detector can reach 42%--65%;
 - The power of the detector can be lower than 0.1W/channel.
- > The GECAM plans to be sent and to get data in 2020.

Thanks for your attention!

References

- B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).
- [2] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061103 (2016).
- [3] F. Quarati et al., Nucl. Instr. And Meth. A 74 (2007) 115.
- [4] E.V. D. van Loef et al., Nucl. Instr. And Meth. A 486 (2002) 254
- [5] A. Iltis et al., Nucl. Instr. And Meth. A 563 (2006) 359.
- [6] P. Dorenbos, et al., IEEE Trans. Nucl.Sci.NS-51(2004)1289.
- [7] G. Bizarri, et al., IEEE Trans. Nucl.Sci.NS-53 (2006)615.
- [8] <http://sensl.com/>.
- [9] P. R. Menge et al, Nucl. Instr. And Meth. A579 (2007) 6.