4TH INTERNATIONAL CONFERENCE ON TECHNOLOGY AND INSTRUMENTATION IN PARTICLE PHYSICS <u>BEIJING (CHINA) MAY 22-26 2017</u>

THE CMS ECAL UPGRADE FOR PRECISION CRYSTAL CALORIMETRY AT THE HL-LHC

PATRIZIA BARRIA ON BEHALF OF THE CMS COLLABORATION

THE CMS ELECTROMAGNETIC CALORIMETER (ECAL)

ECAL CURRENT PERFORMANCE

- ECAL energy resolution crucial for Higgs boson and many other CMS analysis
 - see Chia-Ming Kuo talk
 - $H \rightarrow \gamma \gamma$: Resolution on $m_{\gamma \gamma} \sim 1\%$
- Performance affected by Pile Up (PU) = Overlapping interactions for single bunch crossing (BX)
- Improved techniques for LHC Run II (2015-2018) to cope with higher PU (x2 wrt Run I)

Excellent performance of ECAL @13 TeV Photon Energy resolution: 1-3% in EB, 2.5-4.5% in EE

Can we maintain this performance for the future?

PATRIZIA BARRIA

3

LHC & HL-LHC SCHEDULE

UNIVERSITY of VIRGINIA PATRIZIA BARRIA

CMS ECAL CHALLENGE DURING HL-LHC

5

The HL-LHC conditions = significant challenge to both detector longevity and performance

- EE difficult challenge → radiation levels change by a factor of 100 between |η| = 1.48 and |η| = 3.0
- Dose & fluence levels result in significant loss to the crystal light transmission and VPT performance → replacement of the Endcap (EE) calorimeter for HL-LHC
- EB: radiation damage not a serious problem
 - increase in APD dark current
 → dominant effect for L_{int}> 1000/fb
 - higher PU
 - increased photodetector (APD) noise

	LHC design	HL-LHC prediction
Luminosity $[cm^{-2}s^{-1}]$	1×10 ³⁴	5×10 ³⁴
Int. Luminosity $[fb^{-1}]$	500	3000
γ dose rate (EB $ \eta = 1.0$)	0.2	1.0
[Gy/h] (EE $ \eta = 2.6$)	6	30
hadron fluence (EB $ \eta = 1.0$)	12×10^{11}	$7.6 imes 10^{12}$
[particle/cm ²] (EE $ \eta = 2.6$)	3×10 ¹³	$2.0 imes 10^{14}$

ECAL EB UPGRADE: MOTIVATION

ACCOMODATE PHASE II TRIGGER

Current FE and OD readout inconsistent with L1
 Phase II requirements

SPIKES MITIGATION

- Improved trigger granularity: 1x1 crystal trigger primitive (TP) vs legacy 5x5 (FE/OD)
- Timing: Spikes have different time evolution if compared with scintillation (VFE/OD)

MAINTAIN PERFORMANCE

- APD noise increase will significantly degrade EM resolution at HL-LHC
- MANDATORY to mitigate this by cooling the APDs, and optimising pulse shaping (new VFE)

ECAL BARREL (EB)

12240 VERY FRONT END Cards pulse amplification, shaping, digitisation

2448 FRONT END Cards

data pipeline and transmission, TP formation, clock/control

61200 PbWO₄ CRYSTALS

VIRGINIA

UNIVERSITY

PATRIZIA BARRIA

UNIVERSITY of VIRGINIA PATRIZIA BARRIA

ECAL EB UPGRADE: OVERVIEW

PbWO₄ crystals, APDs, mother boards, & overall mechanical structure will not change

APD dark current strongly dependent on temperature → by
 operating EB colder from 18°C to 8°C → reduce noise by 35% and
 dark current by a factor of 2.5

• The FE and VFE electronics readout will be replaced:

to satisfy the increased trigger latency (up to 12.5 μs) and L1 accept rate (750 kHz) requirements
 to cope with HL-LHC conditions (increased APD dark current, anomalous APD signals, higher PU)

VFE maintains similar purpose, but reduce shaping time+ digitisation reduce out-of-time PU contamination, electronics noise and spikes

- FE card becomes streaming readout, moving most processing offdetector
- Off-detector electronics will be upgraded to accommodate higher transfer rates and to generate trigger primitives -> Trigger will use single crystal information for spike rejection

ECAL EB UPGRADE: PRECISION TIMING

• PRECISION TIMING will improve the vertex localisation for high energy photons:

• Vertex resolution for $H \rightarrow \gamma \gamma$ decays benefits from precise timing

currer fficiency of localising vertex (|dz| < 1 cm) is ~70-80%
 reduced to < 30% at 200 PU with current EB timing precision

see Adolf Bornheim talk

• improves to ~70% for photons with $|\Delta \eta| > 0.8$ for 30 ps timing resolution

Goal: VFE ASIC design, sampling rate, clock distribution should be designed to approach 30 ps timing
precision for high energy EM signals

determining vertex location

ECAL EB UPGRADE: VFE

New VFE boards with re-designed ASICs:

- Optimise shaping time and sampling rate to reduce impact of noise, out-of-time PU, spikes
- Precision timing desired: with 30 ps resolution H vertex efficiency from 30% to 70% (at 200 PU), PU mitigation removing neutral particles
- Pulse shaper/preamplifier ASIC option:
 - TIA (Trans-impedance Amplifier): Digital design, using trans-impedance amplifiers, focused on achieving optimal time resolution (as much as allowed by kapton connections): 160 MHz sampling
- ADC: Require multi-channel ADC with ~12 bit resolution and ability to sample up to 160 MHz

PATRIZIA BARRIA

TIA: AMPLIFIER FOR ECAL EB @HL-LHC

TIA (Trans-impedance Amplifier):

- No shaping time
- Look directly at APD analog signal with high bandwidth
- Optimised for precision timing measurement of EM shower in ECAL

Performance confirmed @CERN during 2016 Test Beam

- High energy electrons (20< Ee < 250 GeV) and pions
- PbWO crystal matrix read out with prototype VFE with discrete component TIA
- different sampling frequencies can be emulated
- APD timing extracted through template fit to pulse shape

flag trigger information

Spike pulse shape is faster and can be rejected

TIME RESOLUTION

Promising results:

- at 160 MHz σ~30 ps @A/σ=250
 - 25 GeV photon with 100 MeV noise (HL-LHC start)
 - 60 GeV photon with 240 MeV noise (HL-LHC end)

PATRIZIA BARRIA

ECAL EB UPGRADE: FE & OFF-DETECTOR

REQUIREMENTS:

- Read data from all crystals
- Increased trigger latency (12.5 µs) → need longer data pipeline

FE Changes:

- Move L1A pipeline off-detector with arbitrary trigger latency
- Move trigger primitive generation off-detector
- Data links from detector to readout cards (in service cavern) to be updated to Versatile links w/ GigaBit Transceiver (GBT) chipset
 - GBT bandwidth allows a full-granularity readout for the trigger
 - Potential for more advanced topological filtering of anomalous events
- Off-detector: trigger, data & controls may be grouped in single card

FE demonstrator with 5Gb/s links

TRIGGER PRIMITIVE GENERATION OFF-DETECTOR

single crystal information should also allow more efficient track/cluster matching for track trigger

PATRIZIA BARRIA

EE COMPLETE REPLACEMENT + EB PARTIAL UPGRADE

▶ EE crystals will suffer large transparency losses → must be replaced in LS3

EB crystals will perform well during HL-LHC (< 50% transparency loss)

APDs remain operational but will have increased noise

JPGRADE

PHASE II

MOTIVATION FOR EB UPGRADE

Increased Trigger rate compared to LHC Run II -> replace VFE, FE and off-detector electronics

Main motivation : Phase II requirements: 750 kHz L1 accept rate & 12.5 μs latency (currently 100 kHz & 5 μs)

Mitigation of APD noise (dark current increase due to higher neutron fluence)
 Cooling temperature reduced to 10 or 8°C (now 18°C)

ADDITIONAL IMPROVEMENTS

▶ Improved spike rejection → single crystal information in trigger + VFE fast shaping

Precision timing for vertex determination & PU mitigation -> new design for VFE electronics

▶ With precise time-of-flight measurement of photons (σ ~30 ps) same angular resolution in H($\rightarrow \gamma \gamma$) analysis as in Run II

PATRIZIA BARRIA

RADIATION DAMAGE IN PbWO4 CRYSTALS

IONIZING RADIATION DAMAGE

- ▶ It recovers at room temperature (~20°C)
- Light transmission of crystals is constantly monitored in ECAL using laser light
- Evolution of the response is in agreement with expectations

HADRON RADIATION DAMAGE

- No recovery at room temperature
- Shift of transmission band edge: cumulative effect
- ▶ Will dominate at HL-LHC

CRYSTAL IRRADIATION @CERN PS

17

PbWo₄ crystals irradiated with monochromatic source of 24 GeV protons and inside CMS

Defects inside the crystals, due to high-radiation environment, lead to stronger induced light absorption

Damaged crystals show a non-linear response to electromagnetic showers

Induced absorption causes a light output loss

The constant term of energy resolution increases with higher μ_{ind} (irradiation dose expressed in terms of the radiation induced absorption coeff. $\mu_{ind}(\lambda)$)

TEST BEAM: DOUBLE-ENDED READ-OUT TECHNIQUE

Experimental setup

- ▶ 9 PbWO₄ crystals with different levels of μ_{ind} (from 0 to 20 m⁻¹)
 - Each crystals is instrumented with a front and a rear photodetector
- Study of crystal response to electrons of 20-250 GeV energy

Additional photodetector on the front face of the crystal would provide:

- information on shower maximum position and event-by-event shower fluctuations
- ▶ better reconstruction of the electron energy by combination of both signals $S_{corr} = \sqrt{R_{sh}} \cdot F_{sh}$

LIGHT COLLECTION AND SHOWER FLUCTUATION

LIGHT COLLECTION UNIFORMITY

- First measurement of light collection efficiency curves for highly damaged crystals
- **Exponential-like behaviour** with attenuation coefficients proportional to the level of induced absorption μ_{ind}

Rear

220 z[mm]

9.08 [...] [a:r

စ္ဆိ 0.07

80.06 Hes

.<mark>≧</mark> 0.05

2_{0.04}

0.03

0.02

0.01

100

50

150

200

z [mm]

LONGITUDINAL SHOWER FLUCTUACTIONS

- In non-damaged crystals the ratio of front/rear signal is rather constant for each event at all beam energies
- Longitudinal shower fluctuations become visible in damaged crystals due to non-uniformity of light collection efficiency

a

500 1000 1500 2000 2500 3000 3500 4000

Rear signal [ADC counts]

Front

Beam direction

Longitudinal shower fluctuations

BARRIA

PATRIZIA

LINEARITY & ENERGY RESOLUTION

LINEARITY

Linearity: E_{reco}/E_{beam} (normalized at 50 GeV) is entirely restored if front and rear signals are properly combined $[S_{corr} = \sqrt{R \cdot F}]$

CMS ECAL preliminar

- ▶ The non-linear response due to µ_{ind} can be isolated from longitudinal leakage effects by comparison with a non-irradiated crystal
- non-linearity estimator can be defined as the change of linear response between 50 and 250 GeV

ENERGY RESOLUTION

Increase of constant term C is ∝ µ_{ind} but the combination of front and rear signals allows to strongly mitigate the degradation of constant term C

Increase of constant term due to radiation damage is defined as

 $\Delta C = \sqrt{C^2_i - C^2_{ni}}$

Strong mitigation of the constant term also for high levels of μ_{ind} (from 11% to 3%)

ATRIZIA

EB UPGRADE MOTIVATION: SPIKE REJECTION

21

- Anomalous signals (spikes) are energy deposits directly into APD bulk
 create fake EM-like pattern
 - Deposited in a single APD compared to EM shower spread over several crystals
 - Arrive earlier in time + shorter pulse than EM shower

• Spike rejection:

- Currently rejected offline at L1 using coarse topological algorithm
- Efficiency will degrade to unacceptable levels at HL-LHC due to higher noise & PU
- VFE/FE will be upgraded for better spike rejection, optimising pulse shaping & using finer granularity (single crystal data) @ L1

Charge deposited directly in the APD results in pulses that are shorter in time than pulses generated by scintillation light