

The ATLAS Level-1 Trigger System with 13TeV nominal LHC collisions

Louis Helary – CERN, on behalf of the ATLAS Collaboration

TIPP2017 - May 25th 2017

Introduction – LHC conditions

	energy	bunch-spacing	\mathcal{L}^{inst}	average collisions	
	[TeV]	[ns]	[cm ⁻² s ⁻¹]	/ bunch-crossing	(or plieup)
Run I (2012)	8	50	8×10^{33}	25-30	_
Run II	13	25	1.5×10^{34}	40-45	_

- Large increase of interaction rate from Run1 to Run2 (~x5).
- Storage and CPU available increase by only a factor 2.
- Trigger strategy needs to be revisited to improve the event selection under in these conditions!

We will see how the L1 systems have been upgraded to cope with these conditions!

ATLAS trigger system

Level1:

- Logic done in dedicated hardware.
- Build regions of interest (RoI) based on coarse calorimeter and muon detector information.
- Topological selections between trigger objects.
- 40 MHz → 100 kHz
- Latency: 2.5 µs

HLT:

• Logic done in commercial computers.

- Fast algorithms running on Rols or full events.
- Relies on object ID algorithms, calibration and detector granularity similar to those used offline.
- 100 kHz \rightarrow 1 kHz
- Latency: 0.2 s

Louis Helary - CERN

ATLAS L1 trigger systems

L1Muon – barrel RPC upgrade

L1Muon – EndCap TGC upgrade

L1 Calo – Firmware and hardware upgrades

- nMCM: new Multi Chip Module.
- CPM: Cluster Processor Module.
- JEP: Jet Energy Processor.
- CMX: Common Merger Module EXtended.

 \rightarrow Allow to run refined

algorithms at L1

L1Calo – Pileup subtraction

L1Calo – Improved Bunch Crossing ID (BCID) measurement

- Observed in 3.5 fb⁻¹ of 2015 data (O(100)) mistimed events.
 - High p_T jet fired in too early BC.
 - Due to the interplay between PeakFinder, autocorrelation Finite Impulse Response (FIR) filters and saturated analogue signals.
- Introduced a first solution early 2016:
 - Switched off PeakFinder after a certain number of saturated samples: PF3 (PF4) for 3 (4) samples.
 - Results in ~2 events per fb⁻¹.
- New algorithm, taking advantage of the new 80 MHz digitization, was deployed at the end of 2016:
 - No mistimed events in 7fb⁻¹ of 2016 data.
- Continue to extensively monitor this!

L1Calo – Improved EM isolation

- EM isolation reoptimized using $Z \rightarrow ee$ events.
- Very useful to suppress QCD background.
- Allow to reduce the rate significantly with high signal efficiency. \rightarrow therefore keep lower p_T items.
- Stable against pile-up increase.

Level-1 E _T	Efficiency loss	Rate reduction
22 GeV	1.3%	14.6%
24 GeV	1.0%	10.8%

L1Topo – motivation

In Run1, only possible to cut on the objects multiplicity and on their p_T.
→Was already at the limit, impossible for certain signatures to cut harder on p_T!
In Run2, introduce topological cuts, at L1 to select events and reduce the rate!
Use dedicated FPGA-based modules to run algorithms in about 75 ns.

• Implement 107 new trigger Topo-items.

Purpose	Input objects	Algorithm
B-physics	muons	ΔR , Mass
H→ ττ	tau_had, muons, electrons	$\Delta\eta, \Delta\phi, Mass$
SUSY	Miss ET, jets	min∆φ, H _T
W→ev	electrons, jets, Miss E _T	Isolation, mT
Long lived Particles	late muons, Miss E _T , jets	Muon in next bunch
etc		
		4.4

L1Topo – validation and usage

• Commissioning during 2015-2016 data-taking.

- Compare output of algorithm in simulation to actual trigger decision.
 →Good agreement!
- →Large rate reduction using topological selection, allow to keep low p_T items! Crucial for B-physics program (for instance, but not only)!

L1CTP – Introduction and motivation for upgrade

CTPCORE+:

- Form 512 triggers using LUT+CAM.
- Coincidence with LHC bunch pattern .
- Perform random prescaling.
- Generate dead-time, and monitor whole chain.

Motivation for upgrade:

- CTP used to the limits of its capacity during the Run1.
- More inputs and trigger items needed to handle new L1Topo.

L1CTP – CTP upgrades

Upgrade compared to Run1:

- Upgraded CTPIN firmware: double data rate (80 MHz) allows up to 320 trigger inputs.
- Upgrade CTPCORE+ hardware module: additional 192 direct inputs (Run1: 0).
 512 trigger inputs (Run1: 160), 512 trigger channels (Run1: 256), better monitoring
- Upgraded CTPOUT+ hardware module.
- Enable multi-partition mode (up to 3 running). Particularly important for commissioning of sub-detectors DAQ in parallel (in the past forced to use ATLAS partition).
- New L1CTP software architecture, designed to be more stable and robust.
- MUCTPI (Muon to CTP Interface) has received firmware upgrade to:
 - Provide L1Topo with (η,ϕ) coordinates $(\Delta\eta x \Delta \phi = 0.3x 0.1)$ of 2 leading muons p_T .
- •New MuCTPIToTopo interface to communicate with L1Topo.

Conclusions

- After the LHC and ATLAS upgrades, despite the harshening of beam conditions, ATLAS took data with very high efficiency so far!
- We hope the best for end of Run2 data-taking!

First beams in 2017 already there!

Back-up

Introduction – ATLAS and the four L1 detectors

Tile Cal. - HCal barrel

Barrel L1 muon - RPC

EndCap L1 muon - TGC Louis Helary - CERN 18

ATLAS L1 trigger

ATLAS L1 trigger – L1Muon

To sub-detector front-end / read-out electronics

Upgrade compared to Run1:

- New RPC chambers installed in feet region(~3%).
- TGC rate reduction using:
 - Coincidence between Small Wheel and big wheel (EI/FI).
 - Coincidence with TileCal barrel.
- Low p_T items (MU4) requires 3 Stations instead of 2.
- New Muon to CTPI Interface firmware to provide muon p_T, η, ϕ to new MUCTPI to topo interface.

ATLAS L1 trigger – L1Calo

Louis Helary - CERN

21

ATLAS L1 trigger – L1Topo

New in Run2!

L1Topo specifications

L1Topo - processing 1 Tb/s / module with latency budget of 150 ns 2 modules with 3 FPGAs each (2 Xilinx Virtex7 XC7V690T for event processing and Kintex 7 for control and readout) 80 multi-gigabit receivers per FPGA (up to 13 Gbit/s)

dedicated boards converting input data into required format are also installed

433200 look-up tables and 3600 digital signal processing slices Execute algorithms in 75 ns (VHDL), decision is transmitted to Central Trigger Processor Algorithms are configurable - up to 128 possible with 2 boards (107 are implemented) 23

ATLAS L1 trigger – L1CTP

Upgrade compared to Run1:

- New hardware / firmware / software.
- More than 3 times the number of trigger inputs $(160 \rightarrow 512)$.
- Improved diagnostics and monitoring features.
- Double the number of triggers $(256 \rightarrow 512)$.
- up to 3 partitions running in parallel for calibration / commissioning.

CAM= content addressable memory

Louis Helary - CERN

L1CTP – New software

