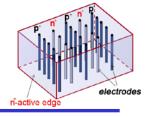
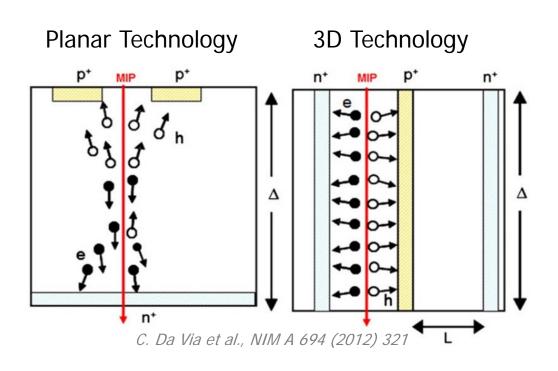
Radiation hardness of small-pitch 3D pixel sensors up to HL-LHC fluences

Fabian Förster, Sebastian Grinstein, <u>Jörn Lange</u>, Stefano Terzo, David Vázquez Furelos

IFAE Barcelona

Maria Manna, Giulio Pellegrini, David Quirion


CNM-IMB-CSIC Barcelona


TIPP, Beijing, 24 May 2017

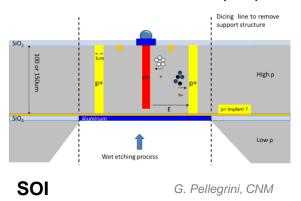
3D Detector Principle

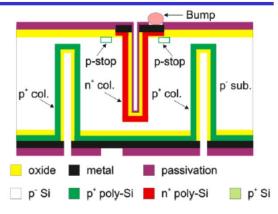
Radiation-hard and active/slim-edge technology

Advantages

- Electrode distance decoupled from sensitive detector thickness
 - \rightarrow lower $V_{depletion}$
 - → less power dissipation, cooling
 - → smaller drift distance
 - → faster charge collection
 - → less trapping
- Active or slim edges are natural feature of 3D technology

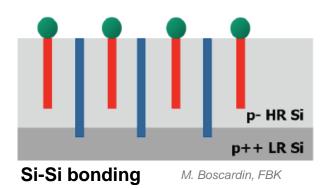
Challenges


- Complex production process
 - → long production time
 - → lower yields
 - → higher costs
- Higher capacitance
 - → higher noise
- Non-uniform response from
 3D columns and low-field regions
 → small efficiency loss at 0°



Different 3D Technologies

Double sided (available at CNM)


- IBL/AFP-proven technology
- No handling wafers needed
 → thickness limited to ≥200 µm and wafers to 4"
- 3D columns ~8 µm diameter
- Single sided (available at FBK, SINTEF, CNM)
 - On handling wafer (SOI or Si-Si bonding)
 → 6" possible (FBK, SINTEF)
 - Active thickness range 50-150 µm being explored
 - Narrow 3D columns ~5 µm possible

Double-sided

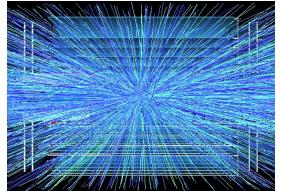
G. Pellegrini, CNM

Applications of 3D Silicon Pixel Detectors

ATLAS IBL

See talk by D. Fares

- 25% 3D FEI4 detectors (CNM+FBK sensors)
- Running since June 2015
- ATLAS Forward Proton (AFP)

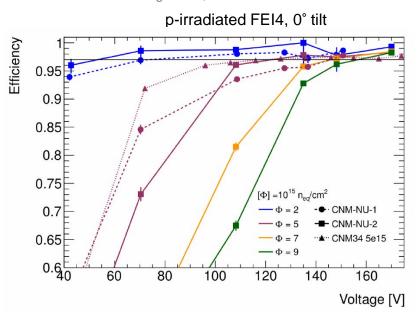

S. Grinstein et al., JINST 12 (2017) C01086

- CNM sensors, 3D pixel modules produced by IFAE
- Running in LHC since March 2016, upgraded in March 2017
- CMS-TOTEM PPS
 - CNM sensors
 - Installed in March 2017

HL-LHC pixel detectors

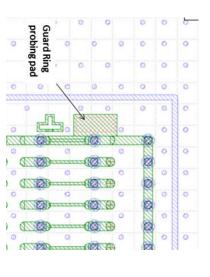
This talk

- Possible installation 2024, sensor qualification for Pixel TDRs 2017
- Radiation hardness: 1-2e16 n_{eq}/cm² required
- Reduced pixel size: 50x50 μm² or 25x100 μm²
- 3D promising candidate for innermost layer(s)

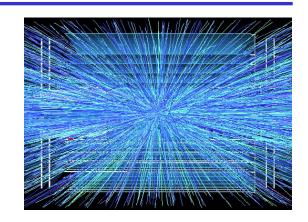


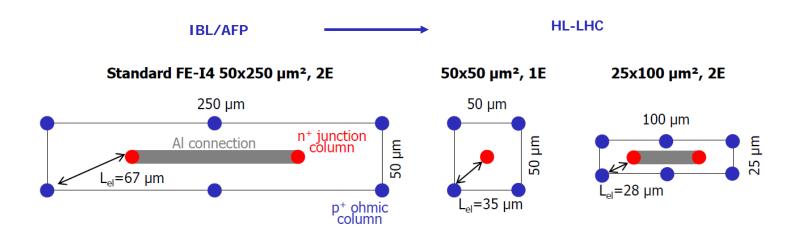
State of the Art: IBL/AFP Generation

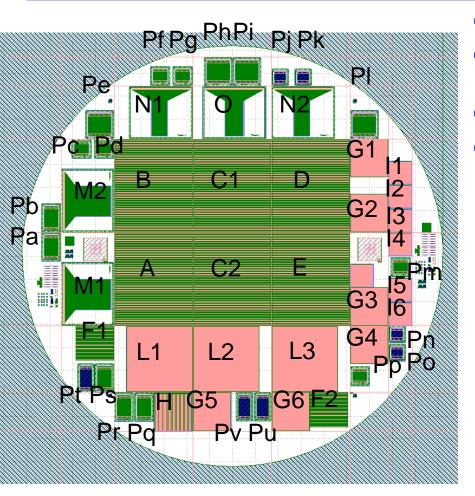
- 230 µm thick sensors by CNM and FBK (double-sided)
- FEI4s: 50x250 μm² 2E, 67 μm inter-el. distance
- Radiation hardness up to 5e15 n_{eq}/cm² established (IBL)
- Explored limits further with irradiations up to HL-LHC fluences
 - At 9.4e15 n_{eq}/cm²: 97.8% efficiency at 170 V!
 - Power dissipation 15 mW/cm² at 1e16 n_{eq}/cm² and -25°C


→ Good performance at HL-LHC fluences even for existing 3D generation

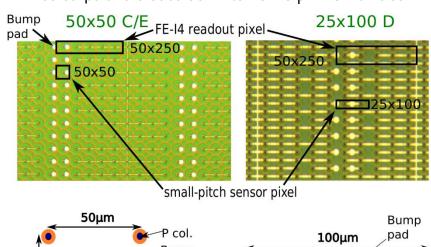
J. Lange et al., 2016 JINST 11 C11024

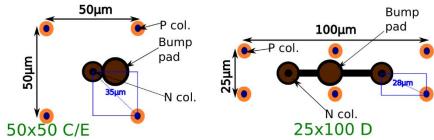

Standard FE-I4 50x250 µm², 2E

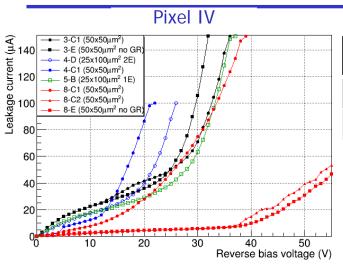



Development of HL-LHC 3D Pixel Detectors

- Radiation hardness: 1-2e16 n_{eg}/cm² required
- Reduced pixel size due to occupancy: 50x50 μm² or 25x100 μm²
 - RD53 readout chip under development
- Reduced 3D inter-electrode distance L_{el}
 - → less trapping, V_{dep}
 - → more radiation hard (but higher C_{det} and more dead material)
- Possibly reduced thickness (75-150 µm single-sided)
 - Lower occupancy, I_{leak}, C_{det} (but also lower signal)
 - But here only 230 µm studied




First Small-Pixel CNM Run for HL-LHC

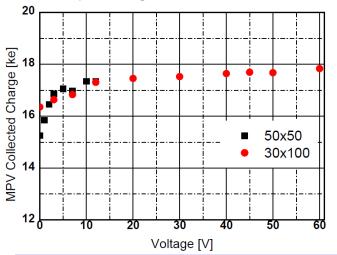

D. Vázquez Furelos et al., 2017 JINST 12 C01026J. Lange et al., 2016 JINST 11 C11024

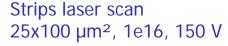
- Run 7781 finished in Dec 2015
- 5x 4" wafers, p-type, 230 μm double-sided, nonfully-passing-through columns (a la IBL)
- Increased aspect ratio 26:1 (column diameter 8 μm)
- First time small pixel size 25x100+ 50x50 µm² (folded into FEI4 and FEI3 geometries)
 - Also strips and diodes down to 25x25 µm² 3D unit cell

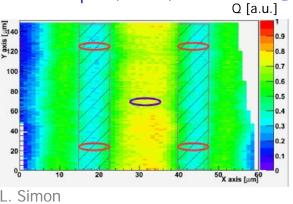
Sample Characterisations

Pixel Geom.	C/el. [fF] (*)	C/pixel [fF] (*)	Noise [e]
25x100 2E	42	84	160
50x50 1E	37	37	105-140

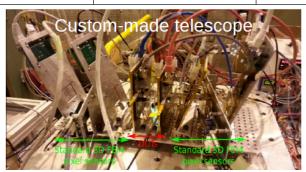
(*) from pad diodes


D. Vázquez Furelos et al., 2017 JINST 12 C01026

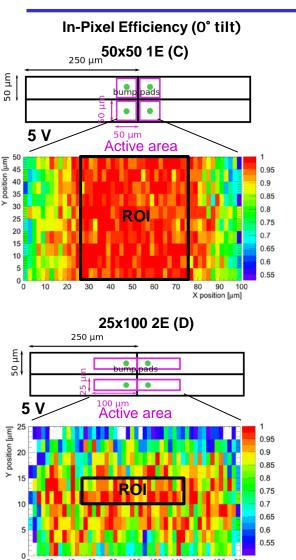

- Pixel devices bump-bonded and assembled at IFAE
- IVs
 - $V_{RD} \sim 15-40 \text{ V}$
 - Improved in new productions after
 CNM process optimization
 S. Grinstein et al., JINST 12 (2017) C01086
- C <100 fF/pixel (within RD53 limit)
- Noise 100-160 e similar to standard 3D FEI4s
- Sr90 source scans on pixels
 - Similar charge as in standard FEI4s


Sr90 and laser scans on strips

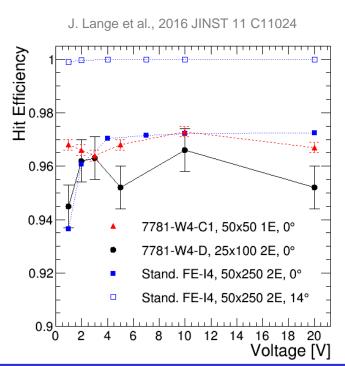
- 17 ke charge as expected for both 50x50 µm² and 30x100 µm² (unirr.)
- Almost full charge even at 0-2 V
 → low V_{dep} due to low L_{el}
- Uniform even after 1e16 n_{ea}/cm²
- Measurements up to 2e16 n_{eq}/cm² in progress

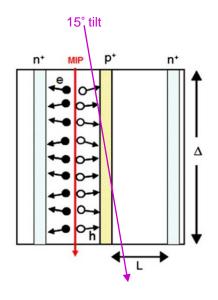


Beam Tests and Irradiations

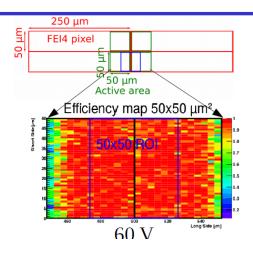

- Irradiation at KIT (uniform) and PS IRRAD (non-uniform)
- Beam tests at CERN SPS H6, 120 GeV pions

Beam Test period	Telescope	Reconstruction framework	Sensor geometry (µm²)	Irradiation (n _{eq} /cm²)
May 2016	Custom-made 3D FEI4	Judith	50x50 + 25x100	Not irradiated
Nov 2016	EUDET	EUTelescope + TBmon2	50x50 + 50x50	5e15 (uniformly 23 MeV p+- KIT)
Sept 2016	EUDET	EUTelescope + TBmon2	50x50	1.4e16 (non uniformly 23 GeV p ⁺ - CERN PS)

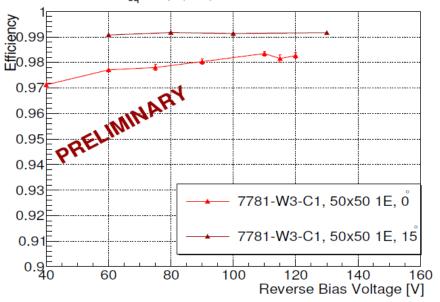




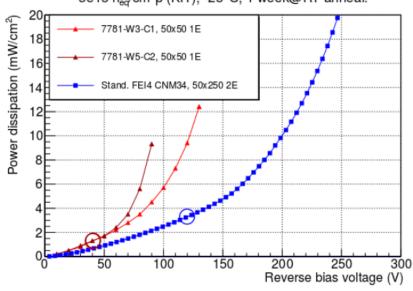
Efficiency before Irradiation



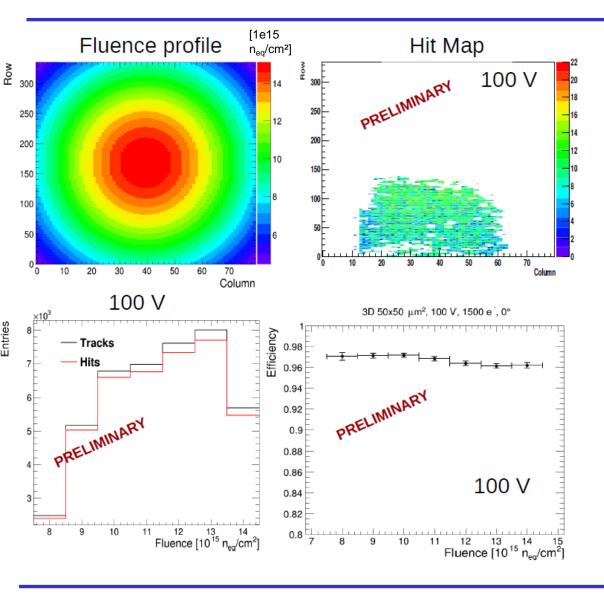
- Select ROI within active region
 → avoid inactive area + telescope smearing
- Efficiency in ROI
 - 97% already from 1 V at 0°: very early depleted due to small electrode distance
 - Improvable by tilting: avoids hitting only lowefficiency regions



Uniform Irradiation to 5e15 n_{eq}/cm²

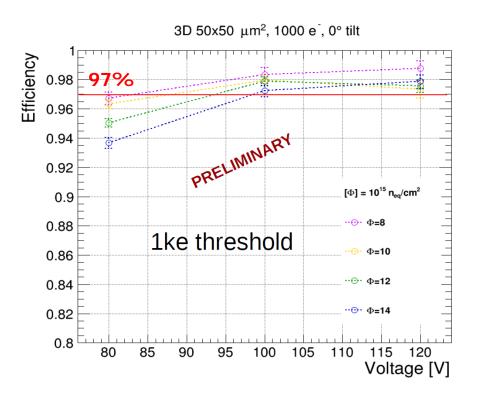


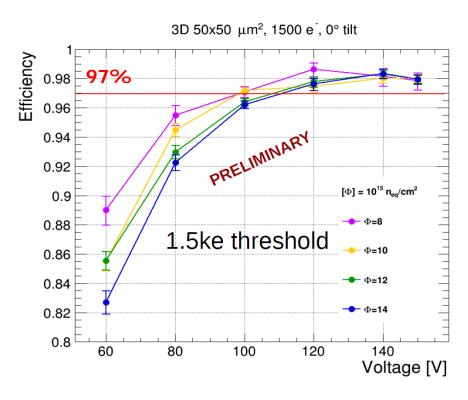
 $5e15 \, n_{ed}/cm^2 p$ (KIT), thr. 1 ke⁻, 10ToT@20ke



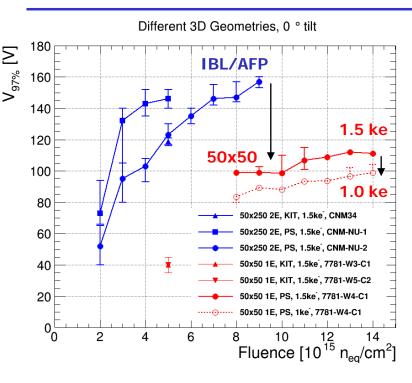
- 2 3D pixel devices of 50x50 μm²
- Irradiated uniformly to 5e15 n_{eg}/cm² at KIT
- Already 97% efficiency at 40 V (0° tilt)!
 - Compare to standard IBL/AFP FEI4: 120 V
 - Improves to 99% at 15° tilt
- Low V_{op} → advantage for power dissipation
 - 1.5 mW/cm²

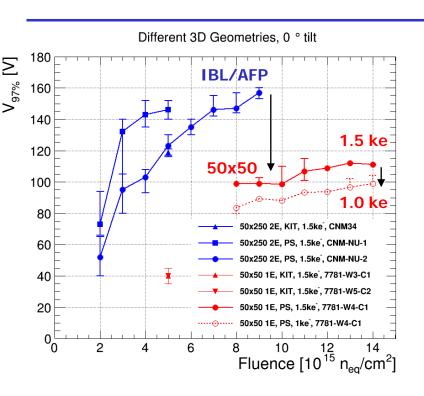
5e15 n_{eg}/cm²p (KIT), -25 °C, 1 week@RT anneal.

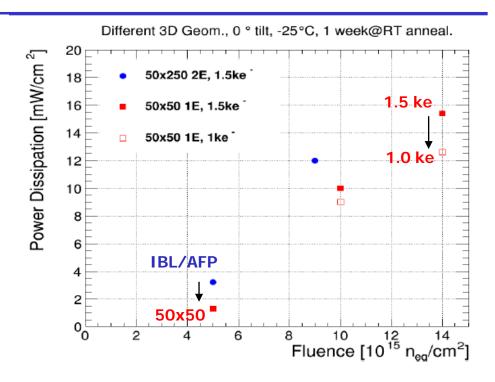



Non-Uniform Irradiation to 1.4e16 n_{eq}/cm²

- Non-uniform irradiation at CERN-PS (23 GeV p) with 20x20 mm² beam
 - Can sample range of fluences on single device: 0.8 – 1.4e16 n_{ea}/cm²
 - Estimation of systematic fluence uncertainty from variations of beam width and position by 1 mm:
 - 11% at 1.4e16 n_{ea}/cm²
 - 24% at 8e15 n_{eg}/cm²
- Only part of device with connected bumps (bad UBM)
 - → Analysis in localised region

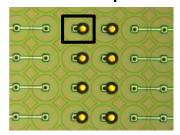

Efficiency for Non-Uniform Irradiation

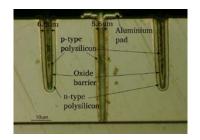

- Efficiency improves with lower threshold
- 97% efficiency already at 100 V (1 ke threshold) after 1.4e16 n_{eq}/cm²!


Comparison IBL to Small Pitch

Highly improved operation voltage for 50x50 µm² 3D compared to IBL/AFP generation

Comparison IBL to Small Pitch


- Highly improved operation voltage for 50x50 µm² 3D compared to IBL/AFP generation
- Also improves power dissipation
 - Despite higher current for 50x50 μm² (still under investigation, might improve after optimisations)
 - 9 (13) mW/cm² at 1e16 (1.4e16) n_{eq}/cm²
 - Considerably lower than for 100 μ m planar devices* with ≥25 mW/cm² at 1e16 n_{eq} /cm² (V_{op} =500 V)


* N. Savic et al., 28th RD50 Workshop, Torino, Italy, 6-8 June 2016

Conclusions and Outlook

- Studied IBL/AFP-generation 3D pixel detectors up to HL-LHC fluences
 - Already excellent radiation hardness
- Studied first CNM 3D production with small HL-LHC pixel size
 - 50x50 and 25x100 µm² matched to FEI4 chip
 - Highly reduced operational voltage and power dissipation wrt.
 IBL/AFP generation (and planar) also after irradiation
 - 100 V for 1.4e16 n_{ea}/cm²
 - Irradiation to higher fluences of 2-3e16 n_{eq}/cm² on-going
- Also productions and promising results from FBK and SINTEF
 See talk by M. Meschini
- Single-sided thin (72-150 μm) 3D productions under way at CNM
 - Also with RD53 geometry

3D sensors excellent candidates for innermost pixel layer(s) at HL-LHC!

BACKUP

