Electromagnetic calorimeter prototype for the SoLID project at Jefferson Lab

Ye Tian, <u>Cunfeng Feng</u>, Jianbin Jiao, Ang Li, Yanhong Yu

Shandong University

Jian-Ping Chen, Xiaochao Zheng,

Jefferson Lab

University of Virginia

The Technology and Instrumentation in Particle Physics 2017, Beijing, May 20-25

JLab 12GeV upgrade

New Hall Maximum electron beam energy Upgrade arc magnets upgraded from 6GeV to 12GeV. and supplies Add 5 cryomodules Upgrade includes both CHL 20 cryomodules accelerator and detector upgrade in each Hall. Add arc 20 cryomodules Add 5 cryomodules Enhanced capabilities in existing Halls

Continuous Electron Beam Accelerator Facility (CEBAF)

SoLID project and EM calorimeter (Solenoidal Large Intensity Device)

- SoLID proposed in Hall A for 5 approved experiment in 12 GeV era.
 - Requires high luminosity and large acceptance.
- Two detector configurations:
 - "SIDIS" (Semi-Inclusive Deep Inelastic Scattering)
 - "PVDIS" (Parity-Violating Deep Inelastic Scattering)

TIPP 2017

 Electromagnetic calorimeter(EC) shared in both configurations

EC Design Requirements

- 1. Provide trigger: coincidence with Cherenkov detector, suppress background
- 2. Electron-hadron separation:
 - \Rightarrow >100:1 π rejection;
 - Electron efficiency > 95%;
- 3. Provide shower position to help tracking/suppress background $\blacktriangleright \sigma \sim 1 \text{ cm}$
- 4. Modules easily swapped and rearranged for PVDIS ↔ SIDIS;

Shashlik EC Longitudinal design

- Preshower: 2 X₀ lead + 20 mm plastic scintillator, WLS fiber embedded in scintillator.
- Shower: shashlik module (0.5mm lead + 1.5mm scintillator + 0.1mm paper sheet×2) ×194,

WLS fiber×96 penetrating layers longitudinally.

• Overall: 20 X₀(<2% leakage), energy resolution less than $10\%/\sqrt{E}$ (GeV)

Good balance between resolution, background and cost(simulation) for 100cm² block size.

> 100 cm² of hexagon shape with 6.25cm side length

0

0

5/22/2017

Main materials in Shashlik EC detector

Lead plate

Scintillator tile

Reflector layer (paper) 5/22/2017

1mm WLS fiber

- Scintillator Tile:
 - Manufacture in Kedi, China
 - Casting with special mould
 - 2 formulas: normal/enhanced
 - Match the absorption spectrum of WLS fiber
- Lead Plate: punching
- Reflection Layer: print paper
- WLS Fiber:
 - BCF91A (Saint-Gobain)
 - Y11 (Kuraray)

Reflector layer selection

Reflector layer test result

Reflector material	No reflector	Printing Paper	Aluminum foil	Tyvek paper	MCPET			
Relative light yield	0.85±0.02	1.00±0.06	0.97±0.08	1.61±0.16	1.24±0.05			
5/22/2017 TIPP 2017								

Fiber polishing and mirror

Fiber polishing in bundle by milling machine

After mirror coating by sputtering. Light yield **increase 70%** than without mirror.

5/22/2017

Fiber Shaping

Glue fibers & hold together, Polishing by milling machine also

The unbundled end of fibers with mirror, separated into 3 different lengths for fiber insertion

Assembly tool

- Stack all the scintillator tiles, lead plates, and reflectors together
- Compress the module stack for 48 hours

Prototypes

 Three shashlik prototypes assembled in Shandong University.

Three shashlik prototypes material list:

Prototype No.	WLS fiber	Fiber reflector	Scintillator	Painting	Reflector layer
#1	BCF91A	No reflector	Original	TiO2+glue	Paper
#2	BCF91A	Silver mirror	Enhanced	TiO2+glue	Paper
#3	Y11	Silver mirror	Enhanced	TiO2+glue	Paper

5/22/2017

Cosmic ray test setup and typical photo-electron distribution

Prototype module cosmic ray test result

Cosmic ray test result

Module No.	NPE	NPE (W/O TiO2)	WLS fiber	Scintillator	Fiber reflector	Painting	Reflector layer
SDU #1	229.2		BCF91A	Kedi	No mirror	TiO2+glue	Print paper
SDU #2	439.5		BCF91A	Kedi(enhanced)	Silver mirror	TiO2+glue	Print paper
SDU #3	486.9	381.3	Y11	Kedi(enhanced)	Silver mirror	TiO2+glue (1:1)	Print paper

> Enhanced scintillator and mirror: light yield increase 95%

- ➤ Coating with TiO2: increase 26.2%
- ➤ Y11 compared with BCF91A: increase 17%

Summary

> All the machining accuracy is well controlled.

> problem for tyvek punching resolved recently.

> Know well of assembling the shashlik module.

> maximum light yield near 500 photoelectrons for single muon in the best module.

> Still lower than SoLID proposal.

> Finding the way to increase the light yield.

Thanks for your attention!

Backups

PMT absolute gain and NPE(number of photoelectrons)

Single photoelectron spectrum

The fitting of the Pedestal and SPE

- LSB is the QDC least significant bit which is equal to 0.029 pC
- e is single electron charge.

5/22/2017

Prototype NPE spectrum

- NPE=Q/(e×Gain)
- Q is charge acquired from QDC with pedestal subtracted.
- Fitted by convolution of Gauss and Landau.