

Introduction

- The gain of SiPMs increases with bias voltage V_{bias} and decreases with temperature T
- To operate SiPMs at stable gain, V_{bias} can be adjusted to compensate for T changes
 important for operation of large detector system like analog hadron calorimeter
- This requires the knowledge of dV/dT, which is obtained from measurements of dG/dV and dG/dT
- We tested this procedure in a climate chamber at CERN in February 2016 using a linear approximation for dV/dT performing automatic dV/dT adjustments with an adaptive power supply

We tested gain stabilization for 30 SiPMs from Hamamatsu, KETEK and CPTA stabilizing 4 SiPMs simultaneously with one dV/dT setting →goal: achieve stable gain if △G/G <±0.5% in 20°-30°C range</p>

Study of Hamamatsu MPPCs with Trenches Waveform and pe spectra of 4 S13360 MPPCs S13360-3025 (10103) S13360-3025 (10104)

G. Eigen, TIPP, Beijing 24 May 2017

Extraction of Photoelectron Spectra

Gain Determination

Gain: distance between the first and the second pe peaks

- Standard fit: separate Gaussian G_i for pedestal, 1. pe peak & 2. pe peak and fractions f_{ped}, f_1 $F_{siq} = f_{ped}G_{ped} + f_1G_1 + (1 f_{ped} f_1)G_2$
- Include background F_{bkg} determined by a sensitive nonlinear iterative peak-clipping algorithm (SNIP) available in ROOT
- Thus, the likelihood function is

$$L = \prod_{i=1}^{50000} \left[f_s F_{sig} \left(w^i \right) + \left(1 - f_s \right) F_{bkg} \left(w^i \right) \right]$$
 f_s: signal fraction

• New fitting methodology: fit pedestal and all visible peaks with Gaussians G_{ped} and G_i , where all widths are free parameters but distance between pe peaks is fixed, except for distance between pedestal and first perpeak $T_{i=1}^{n-1} f_i G_i + (1 - f_{ped} - \sum_{i=1}^{n-1} f_i) G_n$

dG/dT, dG/dV & dV/dT Measurements (new fits)

Compare 2 Fitting Strategies

We obtain the same dV/dT for Hamamatsu A, B & S12571 MPPCs within errors for both fitting strategies

For KETEK and CPTA SIPMs we have tested the new fitting methodology on one channel so far

For these two SiPMs, dV/dT values agree within two agree within 2 standard deviations

We will do the remaining **KETEK and CPTA SiPMs** soon

Gain Stabilization for Hamamatsu MPPCs (old fits)

Gain Stabilization for Hamamatsu MPPCs (new fits)

Gain Stabilization of KETEK SiPMs

Decay time of KETEK SiPMs is much longer than that of other SiPMs → waveforms typically do not പ്പ 900 return to baseline G = 2.3250115 ± 0.0141131 066 800 Amplitude [mV] $G_{nod} = 2.0700105 \pm 0.0142611$ within 200 ns $\sigma_1 = 0.3558460 \pm 0.0160350$ o ₹700 $\sigma_{n} = 0.5565825 \pm 0.0128112$ wide integration Events 600 σ₂ = 0.6419117 ± 0.0238625 window $f_{ss} = 0.742 \pm 0.105$ -20 χ^2 /dof = 2.822 500 T = 25.60 °C -25 Simultaneous gain 400 Data stabilization for 4 180 200 Total fit 60 80 100 120 140 160 300 Signal KETEK SiPMs in two batches: dV/dT=18.2 mV/°C Background 200 KETEK sensors show more complicated V(T) 100 behavior \rightarrow linear correction is not sufficient 10 15 Max. amplitude [mV] € 1°C -18°C: _{×10}° Gain vs 7 Gain vs T G rises -Ch 1 (±0.381% - Ch 1 (±1.538%) 35 -Ch 2 (±1.361%) -Ch 2 (±1.491%) 30 18°C -22°C: - Ch 3 (±1.943%) -Ch 3 (±2.060%) G is uniform - Ch 4 (±1.685%) - Ch 4 (±1.810%) 28-PM3350-PM3350-1 30 22°C-30°C PM3350-5 ശ 26 (ፓ 25 G falls off PM3350-8 PM3350-2 24 Only 1 SiPM 20 W12-B PM3350-22 satisfies 15⊢W12-A $<\pm 0.5\%$ 20 requirement 20 25 30 15 20 25 30 5 10 15 5 10 0 T (°C) G. Eigen, TIPP, Beijing 24 May 2017 T (°C) 10

Gain Stabilization of CPTA SiPMs

Measured dV/dT Values vs V_{bias} (old fits)

Look for correlations between operating voltage and measured dV/dT for all SiPMs

- KETEK & CPTA SiPMs have larger dV/dT spread than Hamamasu MPPCs of same type

MPPC	dV/dT [mV/°C]	SiPM	dV/dT [mV/°C]		
A1-15	59.2±0.4	W12A	21.2±0.4		
A2-15	59.3±0.3	W12B	23.0±0.2		
A1-20	59.6±0.4	PM3350	20.0±0.3		
A2-20	59.8±0.3	PM3350	18.7±0.4		
B1-15	57.3±0.5	PM3350	18.8±0.2		
B2-15	56.5±0.3	PM3350	19.1±0.3		
B1-20	56.9±0.4	PM3350	20.5±0.2		
B2-20	58.0±0.5	PM3350	19.8±0.4		
S12571-271	63.9±0.2	#857	21.6±0.4		
S12571-273	65.2±0.2	#922	22.6±0.2		
S12571-136	63.5±0.3	#875	25.9±0.3		
S12571-137	62.3±0.3	#1065	22.3±0.2		
LCT4#6	53.9±0.5				
LCT4#9	54.0±0.7				
S13360-10143	56.2.±0.3				
S13360-10144	58,1±0.3				
S13360-10103	56.0±0.2				
S13360-10104	56.1±0.1				

Hamamatsu MPPC with trenches have lower bias voltage for similar dV/dT G. Eigen, TIPP, Beijing 24 May 2017

Does Afterpulsing affect Gain Stabilization?

0.001 -0.001

-0.002 -0.003 -0 004

- We determine the pe spectra from the waveforms in 2 ways
 - integrated charge Q
 - magnitude of the peak Apeak
- We analyze the scatter plot of Q versus Apeak
- Signal without afterpulsing lies on the diagonal
- hSpecPe2D Signal with afterpulsing is \bigcirc Entries 50000 shifted upwards since wave-0.6 0.008554 Mean x 0.1496 Mean y form is broadened due to Std Dev x 0.005228 0.5 Std Dev y 0.09436 delayed secondary signal 10² 0.4 0.3 Set slope with 2pe & 3pe peaks 0.2 Dashed line is chosen to be in Δ<u>γ</u>. 10 valley between the 2 regions slope= $\Delta y / \Delta x$ → best separation offset -0.1 Redo analysis for region below 0.005 0.01 0.015 0.02 0.035 0.025 0.0dashed line Δx peak G. Eigen, TIPP, Beijing 24 May 2017

Graph

8000

4000

2000

Time [×0.4n

dG/dV & dG/dT for Reduced Afterpulsing

G. Eigen, TIPP, Beijing 24 May 2017

14

Afterpulsing of LCT4 MPPCs

- Define afterpulsing
 R=events above dashed line/all events
- Study R as a function of V_{bias} for each T
- R shows rapid increase with V_{bias}
- R shows no explicit T dependence
 Spread indicates systemematic effects of procedure

Conclusions and Outlook

- We successfully completed gain stabilization tests for 30 SiPMs and demonstrated that batches of SiPMs can be stabilized with one dV/dT correction
- All 18 Hamamatsu MPPCs, 6 with trenches and 12 without trenches, satisfy the goal:
 △G/G < ±0.5% in the 20°C-30°C T range → most MPPCs satisfy △G/G < ±0.5% in the extended T range 1°C-50°C
 - Gain stabilization of KETEK SiPMs is more complicated,
 - Signals are rather long and are affected by afterpulsing
 - In the stabilization is limited to 1°C-30°C T range where SiPMs have more complex V(T) behavior → need individual dV/dT values to stabilize gain of 4 SiPMs in 20°C-30°C T range
- Gain stabilization of CPTA SiPMs works fine
 → for 3 SiPMs, ∆G/G < ±0.5% is satisfied in 20°C-30°C range
 → procedure works with scintillator and wavelength shifter attached
- We checked all Hamamatsu MPPCs without trenches with new fit model and get the same results; for MPPCs with trenches we need 2 Gaussians per peak
- In the analog HCAL for ILC, V_{bias} adjustment will be implemented on electronics board
- Afterpulsing does not affect gain stabilization results
- Afterpulsing strongly depends on overvoltage not temperature

Acknowledgment

- We would like to thank L. Linssen, Ch. Joram, W. Klempt, and D. Dannheim for using the E-lab and for supplying electronic equipment
- We further would like to thank the team of the climate chamber at CERN for their support

SiPM Properties

Test 18 Hamamatsu MPPCs (6 w trenches), 8 KETEK SiPMs and 4 CPTA SiPMs														
SiPM	Serial#	Size [mm²]	Pitch [µm]	#pixels	V _{bias} [V]	Gain [10 ⁶]	SiPM	Serial#	Size [mm²]	Pitch [µm]	#pixels	V _{bias} [V]	Gain [10 ⁶]	
Туре А	A1	1×1	15	4440	67.22	0.2	W12	1	3×3	20	12100	28	0.54	
Туре А	A2	1×1	15	4440	67.15	0.2	W12	2	3×3	20	12100	28	0.54	
Туре А	A1	1×1	20	2500	66.73	0.23	PM33	1	3×3	50	3600	28	8	
Туре А	A2	1×1	20	2500	67.7	0.23	PM33	2	3×3	50	3600	28	8	
Туре В	B1	1×1	15	4440	74.16	0.2	PM33	5	3×3	50	3600	28	8	
Туре В	B2	1×1	15	4440	73.99	0.2	PM33	6	3×3	50	3600	28	8	
Туре В	B1	1×1	20	2500	73.33	0.23	PM33	7	3×3	50	3600	28	8	
Туре В	B2	1×1	20	2500	73.39	0.23	PM33	8	3×3	50	3600	28	8	
S12571	271	1×1	10	10000	69.83	1.35	СРТА	857	1×1	40	625	33.4	0.71	
S12571	273	1×1	10	10000	69.87	1.35	СРТА	922	1×1	40	625	33.1	0.63	
S12571	136	1×1	15	4440	68.08	2.29	СРТА	975	1×1	40	625	33.3	0.63	
S12571	137	1×1	15	4440	68.03	2.30	СРТА	1065	1×1	40	625	33.1	0.70	
LCT4	6	1×1	50	400	53.81	1.6	 Use 3 types of MPPCs with trenches Two experimental samples (LCT4) Two 1.3 × 1.3 mm² sensors Two 3 × 3 mm² sensors 							
LCT4	9	1×1	50	400	53.98	1.6								
S13360	10143	1.3×1.3	25	2668	57.18	0.7								
S13360	10144	1.3×1.3	25	2668	57.11	0.7								
S13360	10103	3×3	25	14400	57.6	1.7								
S13360	10104	3×3	25	14400	56.97	1.7								
KAR ST	G. Eigen, TIPP, Beijing 24 May 2017													

dG/dV, dG/dT & dV/dT Measurements

Compare 2 Fitting Strategies for A & B SiPMs

We obtain same dV/dT for Hamamatsu A and B SiPMs for both fitting strategies

Compare Fitting Strategies for S12571 & S13360 SiPMs

We obtain same dV/dT for Hamamatsu S12571 and S13369 SiPMs for both fitting strategies

21