

Radiation monitoring with diamond sensors for the Belle-II vertex detector

Chiara La Licata INFN & University, Trieste for the BEAST II Collaboration

TIPP2017 Beijing - May 23, 2017

Belle II at SuperKEKB

TIPP2017, 23-05-2017 Radiation Monitoring with Diamond Sensors for the Belle-II Vertex Detector

Radiation monitoring system

Large radiation doses expected

in 10 years:

15/18 Mrad on pixels

10 Mrad on the silicon vertex detector

Requirements:

Radiation monitoring

 sufficiently accurate measurement of instantaneous and integrated dose

need to monitor radiation occurring in the inner silicon detector

Deliver beam abort signal

- large increase in backgrounds
 - ----- "fast" abort trigger system
- lesser increase in backgrounds
 "slow" abort trigger system

use 20 single crystal diamond sensors

requirements

Why diamond sensors?

- Response time for fastest beam abort trigger: 10 µs
- Response time for slow beam abort trigger: >10 s
- Precision on instantaneous dose rate:

50.0 mrad/s for fast abort 5.0 mrad/s for slow abort

work as an ionization chamber

• wide band gap (5.5 eV)

- high displacement energy (42 eV)
- extreme thermal conductivity (2000 W m⁻¹ K⁻¹)
- high mobility for holes (1200 cm² V⁻¹s⁻¹) and electrons (1800 cm² V⁻¹s⁻¹)
 - 1- Strong resistance to radiation and temperature
 - 2- No need for darkness, pn junction or cooling

3- Ultrafast charge collection due to high drift velocity

Tests and calibrations

- the metallised diamond crystal is first glued on the printed circuit support
- the upper electrode is wire bonded

(0) Preliminary test: dark I-V characteristic:

Dark currents below the pA range at typical O(100V) operation voltage

- stability with time
- uniformity
- charge collection efficiency
- conversion from current to dose rate

NFN

Check stability as diamonds will record dose for years

TIPP2017, 23-05-2017

Radiation Monitoring with Diamond Sensors for the Belle-II Vertex Detector

Transient

Use FLUKA to compare with measurement and infer the gain for each diamond

Comparison with FLUKA

current decreases approximately with the inverse square of the distance

agreement with simulation

measured current > simulated current photoconductive gain (at 100V)

meas/FLUKA

FN

TCT with Alpha source

I **F N**

Commissioning schedule

4 diamonds installed on the beam pipe

Concluded !

Phase I SuperKEKB commissioning

Four diamonds installed on the pipe for beam-radiation measurement

- first test and calibration of diamonds sensors in realistic conditions to prove proper operations and check precision for fast and slow aborts
- first measurement of beam-induced background in SuperKEKB to provide valuable feedback for validating background simulations

• 40x increase in superKEKB luminosity

-----> High instantaneous/integrated radiation doses for the inner silicon detector

- use 20 single crystal diamond sensors to monitor radiation.
 Complete characterization:
 - dark current
 stability with time
 photoconductive gain
 uniformity
 conversion from current to dose rate
- 4 sensors and electronics prototypes installed in the first SuperKEKB commissioning phase.

- Measurements of all primary beam backgrounds and integrated dose measurement

 First test and calibration on diamond and readout electronics done. Precision (0.5 nA on the shortest 10µs time scale) OK for reliable fast and slow aborts for phase 2/3

Development of beam abort in next commissioning phase (02-2018 \rightarrow 07-2018)

BACKUP

16

Specification	Value
Number of radiation sensors	20
diamond sensor size	$5 \text{ mm} \times 5 \text{ mm} \times 500 \mu \text{m}$
maximum coax. cable length from sensor to electronics	$3+40 \mathrm{~m}$
sensor current/dose rate conversion factor	$1 \div 10 \text{ nA/(mrad/s)}$
sensor current measurement sensitivity	0.01 nA
sensor current measurement range	$1 \div 10 \text{mA}$
normal frequency of current sampling	100 kHz
depth of buffer memory for specific events (aborts etc)	600 ms
normal frequency of data recording on slow control DAQ	$1 \div 10 \text{ Hz}$
response time of fastest (hardware) beam abort trigger	$10 \mu \mathrm{s}$
response time of slow (software) beam abort trigger	> 10 s
instantaneous dose rate sensitivity	$1.0 \mathrm{\ mrad/s}$
integrated dose overall relative uncertainty	5%
for typical diamond sensors (fast aborts):	Value
current measurement, precision (time scale 1 ms)	10 nA
response time	up to 10 μs
current range	$0 \div 5 \text{ mA}$
for typical diamond sensors (slow aborts):	Value
current measurement, precision (time scale 1 s)	< 1 nA
response time	$> 1 \div 100 \text{ s}$
current range	$0 \div 15 \ \mu \text{A}$

17

Diamond sensor response

ΙΝΓΝ

Background Studies

I F N

Preliminary study from diamond sensors **Diamonds: Abort Buffer Memories**

- diamond current will be sampled and digitized at 100kHz
- several levels of running averages are computed providing an effective digital filter

Present configuration of revolving Abort Buffer Memories to be improved with really "running sums"

Radiation Monitoring with Diamond Sensors for the Belle-II Vertex Detector

Buffer memories: snapshot example

Example of snapshot of Buffer Memories (Mem1 to Mem4) for Dia3 = BW_0 in stable beam conditions, with average I(BW_0) = 1.5 nA Noise decreases with increased averaging, from about 0.47 nA to < 0.04 nA OK both for fast (10 μ s) and slow (> 1 s) beam aborts with appropriate thresholds

TIPP2017, 23-05-2017

Radiation Monitoring with Diamond Sensors for the Belle-II Vertex Detector

simplified geometry:

Gain factor

Photoconductive gain

10 • 100 V 9 200 V 8 • 300 V 6 5 З 0 20 30 10 40 50 0

distance source-sensor [mm]

Charge Collection Efficiency

Example: DM5, CCE \approx 100%

Landau Most Probable Value (MPV) vs HV \rightarrow Charge Collection Efficiency

$$CCE = \frac{Q_{raccolta}}{Q_{generata}} = \frac{v_{dr}\tau}{d} \left(1 - e^{-\frac{d}{v_{dr}\tau}}\right), \text{ con } v_{dr} = \mu \frac{V}{d}$$

Charge collection 0.7A-30V snr Entries 256 Mean 66.56 $\frac{\text{RMS}}{\chi^2 / \text{ndf}}$ 120 38.48 220.7 / 220 $\textbf{2.394} \pm \textbf{0.069}$ p0 p1 -0.01209 ± 0.00085 100 p2 $\textbf{570.8} \pm \textbf{17.6}$ p3 $\textbf{48.4} \pm \textbf{0.2}$ $\textbf{5.017} \pm \textbf{0.152}$ 80 60 40 20 50 100 150 200 250

' N F N

Reference: With β ⁹⁰Sr source at 18 mm distance -> FLUKA vs measurement We measure currents -> we need a conversion factor from current to dose

FLUKA

• RE (Released Energy) = 3.25 GeV/s

Current-dose calibration factor (2/2)

We measure currents -> we need a conversion factor from current to dose

FLUKA simulation -> 1 %

- Source activity -> 7%
- Electronics Offset drift ~ 2%

(long term < 1%)

BEAST sensors

PIN diodes LYSO/Csl crystals	System	Detectors installed	Measurement
sCVD, ZDLM at >10m downstream	"CLAWS" scintillator	8	injection backgrounds
He3 tubes (thermal neutrons)	Diamonds	4	ionization dose
BGO crystals Diamonds CLAWS scintillators Micro TPCs (fast neutrons)	BGO	8	luminosity
	Crystals	6 CsI(TI) 6 CsI 6 LYSO	EM energy spectrum
	He-3 tubes	4	thermal neutron flux
	Micro- TPCs	2	fast neutron
	PIN diodes	64	neutral vs charged radiation dose

TIPP2017, 23-05-2017Radiation Monitoring with Diamond Sensors for the Belle-II Vertex Detector