

CATIROC

a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment

Dr. Selma Conforti (OMEGA/IN2P3/CNRS)

OMEGA microelectronics group Ecole Polytechnique & CNRS IN2P3

http://omega.in2p3.fr www.conforti@omega.in2p3.fr

Dr. Anatael CABRERA (CNRS/IN2P3-APC), Dr. Christophe DE LA TAILLE (OMEGA/IN2P3/CNRS), Mr. Frederic DULUCQ (OMEGA/INP2P3/CNRS), Dr. Marco GRASSI (CNRS/IN2P3-APC), Dr. Gisele MARTIN-CHASSARD (OMEGA/INP2P3/CNRS), Mr. Alexis NOURY (APC/INP2P3/CNRS), Mr. Cayetano SANTOS (APC/IN2P3/CNRS), Mrs. Nathalie SEGUIN-MOREAU (OMEGA/IN2P3/CNRS), Dr. Mariangela SETTIMO (SUBATECH/IN2P3/CNRS)

Organization for Micro-Electronics desiGn and Applications

JUNO (Jiangmen Underground Neutrino Observatory)

A multipurpose **neutrino experiment** designed to determine neutrino mass hierarchy with a **20,000 tons liquid scintillator detector** at 700-meter deep underground

- ~ 18,000 PMTs (20" diameter) → Large-PMT system (LPMT) → 75 % of the inner surface
- ~ 25,000 PMTs (3" diameter) → Small-PMT system (SPMT) →
 - Increase coverage of the surface → Improve energy reconstruction
 - Cross calibration

Small PMT (SPMT) system

MAIN DAQ

Small PMT requirements:

- Independent electronics
- Multichannel read-out
- Trigger efficiency @ 1/3 p.e.
- Time-stamp (< 1ns resolution)
- Charge information (few p.e.)

128 Small PMTs with a read-out system:
 the Under Water Box (UWB)

≈20m

A dedicated FEB based on CATIROC

Details in:

"Double Calorimetry System in JUNO Experiment"

Dr. Miao HE, May 23, Neutrino session R2

Small PMT front-end board

- SPMT front-end with 8 ASIC CATIROC each of 16 channels
- **FPGA** (Kindex 7 425-T)+ 2GB DDR3 **RAM memory** (large storage and processing on board)
- 4 connector x 32 signals (CATIROC inputs)
- Power supply for ASIC and FPGA
- Low cost concept (**one board/ 128 PMTs/** one under water cable to send out data)

CATIROC for JUNO

A complex System on Chip (SoC). Technology: $0.35~\mu m$ SiGe AMS

CATIROC general features	Application to JUNO
16 independent channels	Reduce the number of electronic board (only 200 boards for 25,000 SPMTs)
Analog F.E. with 16 trigger outputs + charge and time digitization	Photon counting + charge and time measurements. Resolutions very good
Autotrigger mode: all the PMTs signals above the threshold (1/3 p.e.) generate a trigger and are converted in digital data	Simplify online-DAQ
100% trigger efficiency @ 1/3 p.e.	Good 1 p.e. detection photon counting mode
Dual gain front-end : HG and LG channel Charge dynamic range 0 to 400p.e. (at PMT gain 10 ⁶)	Only HG actually used (only few p.e. expected)
Time stamping (resolution ~ 170 ps rms)	< 1ns required
Each channel has a variable gain	To compensate gain vs HV spread for the 16 PMTs
One output for DATA	Less number of cables to the surface
Hit rate 100 kHz/ch (all channels hit) 50 bits of data / hit channel	Very "light" data output (compared to a FADC waveform)

CATIROC schematic

Charge path

- Shaping (variable shaping time)
- Switched capacitor array (2 Capacitors: ping-pong mode)
- 10 bits ADC conversion @ 160 MHz
- 50 fC ÷ 70 pC (PMT gain 106)

Coarse time

by 26-bit gray counter (Digital part) 25 ns steps

Trigger path: AUTO TRIGGER DESIGN

(TDC)
25 ns dynamic rang
Time resolution: 170 ps
Non linearity: +/- 500 ps

Time to Digital Converter

CATIROC performances

The input signal is made by a pulse generator signal: a negative voltage pulse (rise time= 5ns, fall time= 5ns, width= 10 ns, Amplitude @1 p.e.~ 0.8 mV).

The M.I.P. is 1 p.e.= 160 fC @ PMT gain 106

Chip status:

Submission: February 2015

Received: July 2015

Process: AMS 0.35 µm SIGe

Die dimensions: 3.3 mm x 4 mm (13.2 mm²)

Packaging: **TQFP208**Power Supply: 3.3V

Dissipation: 20mW/ch on 3.3 V

Clocks: 40 MHz (Coarse time) and 160 MHz (Conversion)

Trigger efficiency

The trigger efficiency is investigated by scanning the threshold (by the internal DAC) for a fixed channel and monitoring the discriminator response.

DAC resolution: 0.6 DACu/fC

Sensitivity ~ 100 DACu/ p.e.

 σ (noise)= 3.5 DACu= 5.6 fC

Mean= 984 DACu

Minimum threshold= Pedestal mean value (DACu)- 5 σ (DACu)= 968 DACu (~ 28 fC)

Charge resolution and linearity

	HG charge performance	LG charge performance
Linearity residuals	< 0.7 % Up to 50 p.e.	< 1 % up to 400 p.e.
LSB	10 fC/ADCu → 16 ADCu/ 1 p.e.	80 fC/ADCu
Charge resolution	1.5 ADCu (HG) ~ 15 fC	1.2 ADCu (LG) ~ 100 fC

Time resolution

Injection 1 channel: fine time versus input signal delayed

TDC measurements: fine time (10 bits)

INL: [-375.3, 356.4] ps

TDC bin= 27 ps

TDC non linearity= 167 ps rms

TDC resolution= 38 ps

Clock coupling seen on the TDC (residuals)

Injection 16 channels: 4 channels delayed. Delta [Time meas. (CH0) – Time meas. (CHi)]

Coincidence time resolution: [50 ps; 100 ps]

Channel id

Hit rate measurements

HIT RATE			
Tconv (1 ch)	6.4 µs	Tconv (16 ch)	6.4 µs
Tread-out (1 ch)	0.36 µs	Tread-out (16 ch)	3 µs
Tcycle (1 ch)	6.8 µs	Tcycle (16 ch)	9.4 µs
Hit rate (1 ch)	150 kHz	Hit rate (16 ch)	100 kHz

$$Tconv = \frac{2^n}{F_{conv}} = 6.4 \ \mu s$$

$$TRO = \frac{n^{\circ} of \ channels*number \ of \ bit}{F_{RO}}$$

Charge measurements with PMT

1 p.e. distribution

Charge resolution: $\sigma p.e./ \mu p.e.= 30\%$

Ping-pong: charge difference < 5 %

Good charge uniformity (only 2 chs)

Wiggles due to the clock coupling

Preliminary results

Conclusions

- CatiROC performance fits very well for JUNO-SPMT:
 - 100% trigger efficiency @ 1/3 p.e. (50 fC @ PMT gain 10⁶)
 - Charge resolution (only HG used): 1.5 ADCu ~ 15 fC (50 fC @ PMT gain 10⁶)
 - Time resolution= 167 ps rms
- Tests with the HZC 3" PMT shows
 - Good p.e. spectrum
 - Some features (ping/pong and wiggles) that have not significant effects on the data taking
- To do:
 - test with PMT and a light source
 - Front-end board first prototype will be produced in July → test in the next
 Autumn

CATIROC Datasheet on http://omega.in2p3.fr

Neutrino energy spectrum

The SPMT system – UNDER WATER BOX (UWB) () mega

- **HVU**: HV building from LV
- ABC: ASIC Battery Card (8 CATIROCs)
- **CGU**: DAQ = LPMT system

CATIROC main features

CATIROC

Read out frame: 50 bits 2 frames of (29+21) bits 1 frame/8chs

coarse time= 26 Ch nb= 3

Fine time converted= 10 Charge converted= 10 Gain used= 1

Conversion: 10 bits ADC at 160 MHz

Two Read out: 80 MHz

Time stamp: 26 bits counter @ 40 MHz

Triggerless acquisition noise= 5 fC (simulation result) \rightarrow Threshold= 25 fC (calculation 5 σ)

Dynamic range 0 to ~400 p.e. (at PMT gain 10⁶) (simulation result)

Time stamping : resolution < 200 ps A TDC ramp for each channel

Minimum input rate 100 kHz/ch
Max input rate 150 kHz/ch

Output rate 1 serial link (x2 for the 2nd serial link) Max: 40 Mbits/s 16 chs 8,3 Mbits/s 1 ch

Digital part

All channels are handled independently
by the digital part
and only channels that have created triggers
are digitized, transferred to the internal memory
and then sent-out in a data-driven way.

The digital part manages:

Acquisition: Analog memory: 2 depths for HG and LG

Conversion: Analog charge and time into 10 bits digital values saved in the register (RAM)

Read Out: RAM read out to an external system

- Readout clock: 80 MHz
- Max Readout time (16 ch hit): 3 μs
- 50 bits of data / hit channel
- Readout format (MSB first): coarse time= 26 bits; channel number= 3bits;
 fine time=10 bits, charge=10 bits, gain=1 bit

JUNO: the Small PMT (SPMT) system

36.000 3" PMTs

Double-calorimetry:

- Calibration of non-linear response of LPMT (primary), increase optical coverage by ~3% (secondary)
- Solar parameters measurements with partly independent systematics
- Help reconstruction for high energy physics: muon, atmospheric v...
- Help detection of supernova neutrino

Nonlinear response of LPMT due to the distortion of output waveform

Small-PMT (SPMT): measure energy via "photon counting", control systematics →non-stochastic effect

Large-PMT (LPMT):
measure energy
via "charge integration",
increase photon statistics →stochastic effect

Autotrigger efficiency

Impact of CatiROC features

- $\sigma_{pe}/\mu_{pe} \sim 30\%$
- ping-pong: charge difference < 5%
- wiggles effect (distorsion on p.e. < 1%)

Interface planned to test

For CAEN LIKE connectors

